Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Republic of Korea.
Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
Anal Chim Acta. 2024 Nov 15;1329:343174. doi: 10.1016/j.aca.2024.343174. Epub 2024 Aug 29.
The microfluidic paper-based analytical devices (μPADs) have been highly regarded as effective tools that offer a cost-effective and portable solution for point-of-care testing (POCT) and on-site detection. Utilizing paper substrates such as cellulose and nitrocellulose membranes, μPADs have proven beneficial for a range of applications from medical diagnostics to environmental monitoring. Despite their advantages, the fabrication of μPADs often requires sophisticated techniques and equipment, posing challenges for widespread adoption, especially in resource-limited settings. This study addresses the need for a simplified, low-cost method for fabricating μPADs that is accessible without specialized training or equipment.
This research introduces a novel, efficient method for producing μPADs using 3D-printed slidable chambers and super glue vapor, bypassing traditional, more complex fabrication processes. The method utilizes super glue (ethyl-cyanoacrylate) vapor to create hydrophobic barriers on paper substrates. By optimizing the exposure sequence to super glue and water vapors and the heating conditions, we achieved rapid hydrophobization within 5 min, creating effective hydrophobic barriers and hydrophilic channels on paper substrates. The technique's simplicity allows for use by individuals without specialized training. The practical application of the fabrication method is demonstrated by the fabrication of μPADs that can detect multiple target analytes. We perform the simultaneous detection of glucose, proteins, and also the simultaneous detection of heavy metal ions nickel (Ni) and copper (Cu), highlighting its potential for broad applications in point-of-care diagnostics.
This study is the first to report a method for selective exposure of ethyl-cyanoacrylate vapor for the fabrication of μPADs. This method significantly reduces the complexity, time, and fabrication cost, making it feasible for use in various settings. It also eliminates the need for specialized equipment and can be executed by individuals without specialized training. We believe that the proposed fabrication method contributes to the wider adoption and deployment of μPADs across various sectors.
微流控纸基分析器件(μPADs)被认为是一种有效的工具,为即时检测(POCT)和现场检测提供了经济实惠且便携的解决方案。利用纤维素和硝酸纤维素膜等纸基材料,μPADs 已经在从医疗诊断到环境监测等多种应用中得到了证明。尽管它们具有优势,但 μPADs 的制造通常需要复杂的技术和设备,这对广泛采用提出了挑战,特别是在资源有限的环境中。本研究旨在解决需要一种简化、低成本的制造 μPADs 的方法,这种方法不需要专门的培训或设备即可实现。
本研究提出了一种使用 3D 打印可滑动腔室和超级胶水蒸气制造 μPADs 的新颖、高效方法,避免了传统、更复杂的制造工艺。该方法利用超级胶水(乙基氰基丙烯酸酯)蒸气在纸基上形成疏水屏障。通过优化超级胶水和水蒸气的暴露顺序以及加热条件,我们在 5 分钟内实现了快速疏水化,在纸基上形成了有效的疏水屏障和亲水通道。该技术的简单性允许未经专门培训的人员使用。通过制造可以检测多种目标分析物的 μPADs,展示了制造方法的实际应用。我们实现了对葡萄糖、蛋白质的同时检测,以及对重金属离子镍(Ni)和铜(Cu)的同时检测,突出了其在即时诊断领域的广泛应用潜力。
本研究首次报道了一种使用乙基氰基丙烯酸酯蒸气选择性曝光制造 μPADs 的方法。该方法显著降低了复杂性、时间和制造成本,使其在各种环境下都可行。它还消除了对专用设备的需求,未经专门培训的人员也可以执行。我们相信,所提出的制造方法有助于在各个领域更广泛地采用和部署 μPADs。