Senokos Evgeny, Au Heather, Eren Enis Oğuzhan, Horner Tim, Song Zihan, Tarakina Nadezda V, Yılmaz Elif Begüm, Vasileiadis Alexandros, Zschiesche Hannes, Antonietti Markus, Giusto Paolo
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
Small. 2024 Dec;20(51):e2407300. doi: 10.1002/smll.202407300. Epub 2024 Oct 13.
Nanoconfinement is a promising strategy in chemistry enabling increased reaction rates, enhanced selectivity, and stabilized reactive species. Sulfur's abundance and highly reversible two-electron transfer mechanism have fueled research on sulfur-based electrochemical energy storage. However, the formation of soluble polysulfides, poor reaction kinetics, and low sulfur utilization are current bottlenecks for broader practical application. Herein, a novel strategy is proposed to confine sulfur species in a nanostructured hybrid sulfur-carbon material. A microporous sulfur-rich carbon is produced from sustainable natural precursors via inverse vulcanization and condensation. The material exhibits a unique structure with sulfur anchored to the conductive carbon matrix and physically confined in ultra-micropores. The structure promotes Na ion transport through micropores and electron transport through the carbon matrix, while effectively immobilizing sulfur species in the nanoconfined environment, fostering a quasi-solid-state redox reaction with sodium. This translates to ≈99% utilization of the 2e reduction of sulfur and the highest reported capacity for a room temperature NaS electrochemical system, with high rate capability, coulombic efficiency, and long-term stability. This study offers an innovative approach toward understanding the key physicochemical properties of sulfurcarbon nanohybrid materials, enabling the development of high-performance cathode materials for room-temperature Na-S batteries with efficient sulfur utilization.
纳米限域是化学领域一种很有前景的策略,可提高反应速率、增强选择性并稳定活性物种。硫的丰富储量和高度可逆的双电子转移机制推动了基于硫的电化学储能研究。然而,可溶性多硫化物的形成、较差的反应动力学以及较低的硫利用率是目前更广泛实际应用的瓶颈。在此,我们提出了一种将硫物种限制在纳米结构硫-碳杂化材料中的新策略。通过逆硫化和缩合反应,由可持续的天然前驱体制备出一种富含硫的微孔碳材料。该材料呈现出独特的结构,硫锚定在导电碳基体上,并物理限制在超微孔中。这种结构促进了钠离子通过微孔的传输以及电子通过碳基体的传输,同时有效地将硫物种固定在纳米限域环境中,促进与钠发生准固态氧化还原反应。这使得硫的双电子还原利用率约为99%,且室温钠硫电化学系统的容量达到了已报道的最高值,同时具有高倍率性能、库仑效率和长期稳定性。本研究为理解硫-碳纳米杂化材料的关键物理化学性质提供了一种创新方法,有助于开发具有高效硫利用率的室温钠硫电池高性能正极材料。