Chen Jingwen, Chen Xiaomei, Chen Qiong, Zhu Yiren, Deng Qi
Guangxi Academy of Sciences, Nanning, Guangxi 530000, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China.
School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China.
Sci Total Environ. 2024 Dec 10;955:176835. doi: 10.1016/j.scitotenv.2024.176835. Epub 2024 Oct 11.
Climate models predict longer and more severe droughts, and alterations in the frequency and intensity of rainfall events. However, how changing precipitation patterns affect soil organic carbon (SOC), particulate organic carbon (POC), and mineral-associated organic carbon (MAOC) remains unclear. Here, we conducted a three-year rainfall manipulation experiment with ambient rainfall as the control, removal of half the total rainfall amount with unaltered frequency (DRA), and increased rainfall frequency with the total amounts unchanged (IRF) in a subtropical forest. The results showed that the rainfall treatments did not change SOC content or fractions during the wet season. In the dry season, DRA significantly increased topsoil POC but did not change SOC or MAOC. IRF significantly increased POC and MAOC levels. The increased MAOC was associated with the newly formed binary complexes of Fe, Al, and Ca, and the adsorption/precipitation of reduced short-range-ordered Fe oxides, likely derived from the enhanced reductive dissolution in the IRF treatment. Our results suggest that changes in rainfall frequency affect organo-mineral interactions more profoundly relative to the rainfall amount and that these effects are season-dependent. Therefore, moisture-sensitive geochemical processes play an essential role in SOC stabilization in subtropical forests.