Suppr超能文献

探索人工智能及其在药学科学中的影响:展望技术与传统相遇的未来。

Exploring the Artificial Intelligence and Its Impact in Pharmaceutical Sciences: Insights Toward the Horizons Where Technology Meets Tradition.

机构信息

Center for SeNSE, Indian Institute of Technology Delhi (IIT), New Delhi, India.

Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India.

出版信息

Chem Biol Drug Des. 2024 Oct;104(4):e14639. doi: 10.1111/cbdd.14639.

Abstract

The technological revolutions in computers and the advancement of high-throughput screening technologies have driven the application of artificial intelligence (AI) for faster discovery of drug molecules with more efficiency, and cost-friendly finding of hit or lead molecules. The ability of software and network frameworks to interpret molecular structures' representations and establish relationships/correlations has enabled various research teams to develop numerous AI platforms for identifying new lead molecules or discovering new targets for already established drug molecules. The prediction of biological activity, ADME properties, and toxicity parameters in early stages have reduced the chances of failure and associated costs in later clinical stages, which was observed at a high rate in the tedious, expensive, and laborious drug discovery process. This review focuses on the different AI and machine learning (ML) techniques with their applications mainly focused on the pharmaceutical industry. The applications of AI frameworks in the identification of molecular target, hit identification/hit-to-lead optimization, analyzing drug-receptor interactions, drug repurposing, polypharmacology, synthetic accessibility, clinical trial design, and pharmaceutical developments are discussed in detail. We have also compiled the details of various startups in AI in this field. This review will provide a comprehensive analysis and outline various state-of-the-art AI/ML techniques to the readers with their framework applications. This review also highlights the challenges in this field, which need to be addressed for further success in pharmaceutical applications.

摘要

计算机技术革命和高通量筛选技术的进步推动了人工智能(AI)的应用,以提高药物分子发现的效率,并以更经济的成本找到命中或先导分子。软件和网络框架解释分子结构表示并建立关系/相关性的能力使各个研究团队能够开发出许多人工智能平台,以识别新的先导分子或发现已建立药物分子的新靶点。在早期预测生物活性、ADME 性质和毒性参数可降低后期临床阶段失败的可能性和相关成本,这在繁琐、昂贵且费力的药物发现过程中得到了很高的体现。

本篇综述重点介绍了不同的人工智能和机器学习(ML)技术及其在制药行业的主要应用。讨论了 AI 框架在识别分子靶标、命中鉴定/命中到先导优化、分析药物-受体相互作用、药物重新定位、多药理学、合成可及性、临床试验设计和药物开发方面的应用。我们还在这个领域中汇编了各种人工智能初创公司的详细信息。

本篇综述将为读者提供全面的分析和概述各种最先进的 AI/ML 技术及其框架应用。此外,还强调了该领域的挑战,需要解决这些挑战才能在制药应用中取得进一步的成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验