Suppr超能文献

提供多学科间ILD 诊断(PROMISE)研究——日本国家注册处的研究设计,促进在线互动多学科讨论诊断

The providing multidisciplinary ILD diagnoses (PROMISE) study - study design of the national registry of Japan facilitating interactive online multidisciplinary discussion diagnosis.

机构信息

Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, 489-8642, Japan.

Medical IT center, Nagoya University Hospital, Nagoya, Japan.

出版信息

BMC Pulm Med. 2024 Oct 14;24(1):511. doi: 10.1186/s12890-024-03232-1.

Abstract

BACKGROUND

Multidisciplinary discussion (MDD), in which physicians, radiologists, and pathologists communicate and diagnose together, has been reported to improve diagnostic accuracy compared to diagnoses made solely by physicians. However, even among experts, diagnostic concordance of MDD is not always good, and some patients may not receive a specific diagnosis due to insufficient findings. A provisional diagnosis based on the ontology with a diagnostic confidence level has recently been proposed. Additionally, we developed an artificial intelligence model to differentiate idiopathic pulmonary fibrosis (IPF) from other chronic interstitial lung diseases (ILD)s, which needs validation in a broader population.

METHODS

This prospective nationwide ILD registry has recruited patients with newly diagnosed ILD at the referral respiratory hospitals in Japan and provides rapid MDD diagnoses and treatment recommendations through a central online MDD platform with a 3-year follow-up period. A modified diagnostic ontology is used. If no diagnosis reaches more than 50% certainty, the diagnosis is unclassifiable ILD. If multiple diseases are expected, the diagnosis with a high probability takes precedence. If the confidence levels for the top two possible diagnoses are equal, the diagnosis can be unclassifiable. The registry uses tentative diagnostic criteria for nonspecific interstitial pneumonia with organising pneumonia and smoking-related ILD not otherwise specified as possible new entities. Central MDD diagnosticians review the clinical data, test results, radiology images, and pathological specimens on a dedicated website and conduct MDD diagnoses using online meetings with a cloud-based reporting system. This study aims to (1) provide MDD diagnoses with treatment recommendations; (2) determine the overall ILD rates in Japan; (3) clarify the reasons for unclassifiable ILDs; (4) evaluate possible new disease entities; (5) identify progressive phenotypes and create a clinical prediction model; (6) measure the agreement rate between institutional and central diagnoses in ILD referral and non-referral centres; (7) identify key factors for each specific ILD diagnosis; and (8) create a new disease classification system based on treatment strategies, including the use of antifibrotic drugs.

DISCUSSION

This study will provide ILD frequencies, including new entities, using central MDD on dedicated online systems, and develop a machine learning model for ILD diagnosis and prognosis prediction.

TRIAL REGISTRATION

UMIN-CTR Clinical Trial Registry (UMIN000040678).

摘要

背景

多学科讨论(MDD),即医生、放射科医生和病理科医生共同交流和诊断,已被报道可提高诊断准确性,优于仅由医生做出的诊断。然而,即使是专家,MDD 的诊断一致性也并不总是很好,一些患者可能由于发现不足而未得到明确诊断。最近提出了一种基于本体的暂定诊断,并附有诊断置信度水平。此外,我们开发了一种人工智能模型,用于区分特发性肺纤维化(IPF)和其他慢性间质性肺疾病(ILD),需要在更广泛的人群中进行验证。

方法

这项前瞻性全国性ILD 登记研究招募了在日本转诊呼吸医院新诊断为ILD 的患者,并通过中央在线 MDD 平台提供快速 MDD 诊断和治疗建议,该平台具有 3 年随访期。使用改良的诊断本体。如果没有一种诊断达到 50%以上的确定性,则诊断为未分类ILD。如果预计有多种疾病,则以高概率的诊断为主。如果两种最可能诊断的置信度水平相等,则诊断可以未分类。该登记使用非特异性间质性肺炎伴机化性肺炎和未特指的与吸烟有关的ILD 的暂定诊断标准作为可能的新实体。中央 MDD 诊断员在专用网站上审查临床数据、检验结果、影像学图像和病理标本,并使用基于云的报告系统在线会议进行 MDD 诊断。本研究旨在:(1)提供 MDD 诊断和治疗建议;(2)确定日本ILD 的总体发病率;(3)阐明未分类ILD 的原因;(4)评估可能的新疾病实体;(5)确定进行性表型并创建临床预测模型;(6)测量ILD 转诊和非转诊中心机构和中央诊断的一致性率;(7)确定每个特定ILD 诊断的关键因素;(8)根据治疗策略,包括使用抗纤维化药物,创建新的疾病分类系统。

讨论

本研究将使用专用在线系统中的中央 MDD 提供ILD 频率,包括新实体,并开发ILD 诊断和预后预测的机器学习模型。

试验注册

UMIN-CTR 临床试验注册(UMIN000040678)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4389/11472475/e43cb982c185/12890_2024_3232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验