Department of Biotechnology, National Institute of Technology, Warangal, 500604, India.
Sci Rep. 2024 Oct 14;14(1):23949. doi: 10.1038/s41598-024-71076-0.
Breast cancer remains a leading cause of mortality among women worldwide, with drug resistance driven by transcription factors and mutations posing significant challenges. To address this, we present ResisenseNet, a predictive model for drug sensitivity and resistance. ResisenseNet integrates transcription factor expression, genomic markers, drugs, and molecular descriptors, employing a hybrid architecture of 1D-CNN + LSTM and DNN to effectively learn long-range and temporal patterns from amino acid sequences and transcription factor data. The model demonstrated exceptional predictive accuracy, achieving a validation accuracy of 0.9794 and a loss value of 0.042. Comprehensive validation included comparisons with state-of-the-art models and ablation studies, confirming the robustness of the developed architecture. ResisenseNet has been applied to repurpose existing anticancer drugs across 14 different cancers, with a focus on breast cancer. Among the malignancies studied, drugs targeting Low-grade Glioma (LGG) and Lung Adenocarcinoma (LUAD) showed increased sensitivity to breast cancer as per ResisenseNet's assessment. Further evaluation of the predicted sensitive drugs revealed that 14 had no prior history of anticancer activity against breast cancer. These drugs target key signaling pathways involved in breast cancer, presenting novel therapeutic opportunities. ResisenseNet addresses drug resistance by filtering ineffective compounds and enhancing chemotherapy for breast cancer. In vitro studies on sensitive drugs provide valuable insights into breast cancer prognosis, contributing to improved treatment strategies.
乳腺癌仍然是全球女性死亡的主要原因,转录因子和突变驱动的耐药性带来了重大挑战。针对这一问题,我们提出了 ResisenseNet,这是一种用于药物敏感性和耐药性预测的模型。ResisenseNet 整合了转录因子表达、基因组标志物、药物和分子描述符,采用 1D-CNN+LSTM 和 DNN 的混合架构,有效地从氨基酸序列和转录因子数据中学习长程和时间模式。该模型表现出出色的预测准确性,验证准确性达到 0.9794,损失值为 0.042。全面验证包括与最先进模型的比较和消融研究,证实了所开发架构的稳健性。ResisenseNet 已应用于重新利用现有的抗癌药物治疗 14 种不同的癌症,重点是乳腺癌。在所研究的恶性肿瘤中,根据 ResisenseNet 的评估,针对低级别神经胶质瘤 (LGG) 和肺腺癌 (LUAD) 的药物对乳腺癌的敏感性增加。对预测的敏感药物的进一步评估表明,其中 14 种药物以前没有针对乳腺癌的抗癌活性。这些药物针对涉及乳腺癌的关键信号通路,提供了新的治疗机会。ResisenseNet 通过过滤无效化合物和增强乳腺癌化疗来解决耐药性问题。对敏感药物的体外研究为乳腺癌预后提供了有价值的见解,有助于改善治疗策略。