Suppr超能文献

使用模糊聚类和决策树分析来描述 2 型糖尿病的认知表型和临床相关性。

Characterizing cognitive phenotypes and clinical correlates in type 2 diabetes using fuzzy clustering and decision tree analysis.

机构信息

Faculty of Pharmacy, Clinical Pharmacy Department, Bezmialem Vakif University, Istanbul, Türkiye.

Faculty of Medicine, Biostatistics Department, Bezmialem Vakif University, Istanbul, Türkiye.

出版信息

Sci Rep. 2024 Oct 14;14(1):23965. doi: 10.1038/s41598-024-74741-6.

Abstract

Cognitive impairment is frequently seen in patients with type 2 diabetes (T2DM), ranging from mild impairment to dementia. However, our knowledge of the specific profiles and risk factors for these different levels of impairment is limited. In this study involving 152 patients with T2DM, cognitive function was assessed using the Montreal Cognitive Assessment test. The Fuzzy C-means clustering algorithm was utilized to group individuals with similar cognitive characteristics. The study evaluated how well clinical parameters could classify characteristics of clusters using the Classification and Regression Trees algorithm. ROC analysis was then used to assess the classification success. Three distinct cognitive clusters were identified. Cluster 1 had the poorest cognitive performance and was characterized by more women, lower education levels, and lower levels of iron, hemoglobin, and creatine. Cluster 3, the amnestic cluster, was distinguished by low TSH levels. The decision tree model highlighted several parameters, including education level, hemoglobin, duration of diabetes mellitus (DM), iron, TSH, gender, family history of diabetes, and microalbumin/creatinine ratio, as significantly affecting the distinction of cognitive clusters. Diabetes-associated cognitive impairment stems from multifaceted pathophysiological mechanisms influenced by complex risk factors, resulting in diverse types of cognitive deficits.

摘要

认知障碍在 2 型糖尿病(T2DM)患者中很常见,从轻度损害到痴呆不等。然而,我们对这些不同程度损害的具体特征和危险因素的了解有限。在这项涉及 152 名 T2DM 患者的研究中,使用蒙特利尔认知评估测试评估认知功能。使用模糊 C 均值聚类算法将具有相似认知特征的个体进行分组。该研究评估了分类和回归树算法如何使用临床参数对聚类特征进行分类。然后使用 ROC 分析评估分类成功。确定了三个不同的认知聚类。聚类 1 的认知表现最差,其特征是女性更多、教育水平更低,以及铁、血红蛋白和肌酸水平更低。遗忘聚类聚类 3 的特点是 TSH 水平较低。决策树模型突出了几个参数,包括教育水平、血红蛋白、糖尿病病程、铁、TSH、性别、糖尿病家族史和微量白蛋白/肌酐比,这些参数显著影响认知聚类的区分。与糖尿病相关的认知障碍源于受复杂危险因素影响的多方面病理生理机制,导致不同类型的认知缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adf1/11471797/61fd7b047460/41598_2024_74741_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验