Suppr超能文献

使用深度学习算法在宽带相干反斯托克斯拉曼散射显微镜中去除非共振背景

Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms.

作者信息

Vernuccio Federico, Broggio Elia, Sorrentino Salvatore, Bresci Arianna, Junjuri Rajendhar, Ventura Marco, Vanna Renzo, Bocklitz Thomas, Bregonzio Matteo, Cerullo Giulio, Rigneault Hervé, Polli Dario

机构信息

Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy.

Aix Marseille University, CNRS, Centrale Med, Institut Fresnel, Marseille, France.

出版信息

Sci Rep. 2024 Oct 13;14(1):23903. doi: 10.1038/s41598-024-74912-5.

Abstract

Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.

摘要

宽带相干反斯托克斯拉曼(BCARS)显微镜是一种成像技术,能够在几毫秒内获取生物样品的完整拉曼光谱(400 - 3200厘米)。然而,CARS信号存在不期望的非共振背景(NRB),它源于四波混频过程,这会扭曲峰线形状并降低化学对比度。传统上,使用需要专业用户和NRB光谱轮廓知识的数值算法来去除NRB。最近,深度学习模型被证明是用于无监督自动化和加速NRB去除的强大工具。在这里,我们全面回顾了现有的NRB去除深度学习模型(SpecNet、VECTOR、LSTM、Bi - LSTM),并提出了两种新颖的架构。第一种将卷积层与门控循环单元相结合(CNN + GRU);第二种是生成对抗网络(GAN),它训练一个编码器 - 解码器网络和一个对抗卷积神经网络。我们还引入了一个改进的训练数据集,该数据集在不同的BCARS实验配置上具有通用性。我们在测试和实验数据上比较了所有这些网络的性能,并将它们用于BCARS图像光谱解混的流程中。我们的分析表明,CNN + GRU和VECTOR是准确率最高的网络,GAN是在实验数据中预测真阳性峰数量最多的网络,而GAN和VECTOR是最适合实时处理BCARS图像的网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/11471805/5a900df18656/41598_2024_74912_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验