Suppr超能文献

全共轭四硼乙烯:硒介导的二硼卡宾形成碳 - 碳双键反应

Fully conjugated tetraborylethylene: selenium mediated C-C double bond formation from diborylcarbenoid.

作者信息

Shibutani Yuki, Kusumoto Shuhei, Nozaki Kyoko

机构信息

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan.

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo Japan

出版信息

Chem Sci. 2024 Oct 2;15(43):17912-7. doi: 10.1039/d4sc05928j.

Abstract

Heteroatom-substituted ethylenes have long been studied owing to their potential application to electronic devices. In contrast to well-studied π-donor substituted ethylene, the π-acceptor substituted one has only been limitedly reported. While boron can be a candidate of π-acceptors, there has still been no example of fully conjugated tetraborylethylene (TBE). Herein, we synthesized the first fully conjugated TBE 2 by selenium-mediated C-C double bond formation from diborylcarbenoid 1, a synthetic equivalent of diborylcarbene (DBC). An intermediate of bis(diborylmethylene)-λ-selane 3, wherein two DBC fragments were bound to one selenium atom, was confirmed. TBE 2 has a longer C-C bond length of 1.368(2) Å than typical C-C double bonds (1.34 Å) owing to π-electron deficiency. By density functional theory calculations, the LUMO was found to be low-lying at -1.75 eV by the contribution of vacant p-orbitals on the boron atoms adjacent to the C-C double bond.

摘要

由于杂原子取代的乙烯在电子器件中的潜在应用,长期以来一直受到研究。与研究充分的π供体取代乙烯不同,π受体取代乙烯的报道仍然有限。虽然硼可以作为π受体的候选者,但尚未有完全共轭的四硼基乙烯(TBE)的实例。在此,我们通过硒介导的二硼基卡宾体1(二硼基卡宾(DBC)的合成等效物)形成碳-碳双键,合成了首个完全共轭的TBE 2。确认了双(二硼基亚甲基)-λ-硒烷3的中间体,其中两个DBC片段与一个硒原子相连。由于π电子缺乏,TBE 2的碳-碳键长为1.368(2) Å,比典型的碳-碳双键(1.34 Å)更长。通过密度泛函理论计算,由于与碳-碳双键相邻的硼原子上的空p轨道的贡献,发现最低未占分子轨道(LUMO)处于较低能量,为-1.75 eV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/251c/11539368/1dc9cb69bcc7/d4sc05928j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验