Tang Yangyang, Cao Xiaolei, Kong Rui, Li Xianyong, Wang Jiankun, Wu Jin, Wang Xiaoling
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Biomicrofluidics. 2024 Oct 9;18(5):054111. doi: 10.1063/5.0211134. eCollection 2024 Sep.
In order to study biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of in microdroplets, which is useful for exploring the influence of motility on biofilm formation.
为了研究微滴中的生物膜形成,我们使用微流控技术制造微滴,并利用共聚焦显微镜捕捉微滴中细菌的运动和生物膜形成。我们开发了一种多目标跟踪方法,使用YOLOv5检测器识别细胞,并使用DeepSORT算法跟踪细胞运动。我们发现,具有自主迁移和生物膜形成能力的细菌更喜欢在微滴表面附近聚集和群集,而不是在微滴内部。细菌的移动性取决于其表型和在微滴内的空间位置。运动细胞的移动速度比产生基质的细胞快约3.5倍。当细胞靠近微滴壁时,运动细胞的运动方向沿着该壁。当细胞在微滴内部时,运动细胞的运动方向是无序的,即没有明确的定向或目标导向运动。这种差异增加了细胞接触概率,并促进了微滴中生物膜的形成。此外,我们开发了一个数学模型来描述微滴中细胞的运动行为,这对于探索移动性对生物膜形成的影响很有用。