Kim Jeong Tae, Park Sung Min
Maritime Technology Research Institute, Agency for Defense Development, Jinhae P.O. Box 18, Changwon, Gyeongnam, 51678, Republic of Korea.
Heliyon. 2024 Sep 24;10(19):e38390. doi: 10.1016/j.heliyon.2024.e38390. eCollection 2024 Oct 15.
The study aimed to analyze the mechanical properties, precipitation strengthening, and microstructure of Al-Ni-Cu alloys to understand their enhanced characteristics. Additionally, the damping behavior was examined using a dynamic mechanical analyzer across a continuous heating temperature range with frequencies from 0.5 to 15 Hz. The experimental results indicate that the Al-Ni eutectic alloy, which exhibits an ultrafine AlNi intermetallic fiber-reinforced Al matrix, transitions to a dendritic-ultrafine eutectic composite structure. The Cu-containing alloys exhibit two distinct primary phases: α-Al and Al-Ni-Cu ternary intermetallic compounds. The eutectic matrix transforms from Al-AlNi to Al-AlCuNi, and subsequently to Al-AlCu. These microstructural evolutions result in an enhancement of the tensile yield strength from 170 MPa to 440 MPa, with additional hardening achieved through aging-induced precipitation. Moreover, the damping capacity improves with the addition of Cu at elevated temperatures, and there is an increase in frequency dependence. This paper will discuss the microstructural features, mechanical properties, deformation behaviors, and damping properties in detail.
该研究旨在分析Al-Ni-Cu合金的力学性能、析出强化和微观结构,以了解其增强特性。此外,使用动态力学分析仪在0.5至15Hz频率的连续加热温度范围内研究了阻尼行为。实验结果表明,具有超细AlNi金属间化合物纤维增强Al基体的Al-Ni共晶合金转变为枝晶-超细共晶复合结构。含Cu合金呈现出两种不同的初生相:α-Al和Al-Ni-Cu三元金属间化合物。共晶基体从Al-AlNi转变为Al-AlCuNi,随后转变为Al-AlCu。这些微观结构演变导致拉伸屈服强度从170MPa提高到440MPa,并通过时效诱导析出实现额外硬化。此外,在高温下添加Cu可提高阻尼能力,且频率依赖性增加。本文将详细讨论微观结构特征、力学性能、变形行为和阻尼性能。