Suppr超能文献

深水固井隔热材料的研发与评价

Development and Evaluation of Insulation Materials for Deepwater Cementing.

作者信息

Shen Shengda, Bu Yuhuan, Lu Chang, Liu Shujie, Liu Huajie, Guo Shenglai

机构信息

School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China.

National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China.

出版信息

ACS Omega. 2024 Sep 27;9(40):41904-41913. doi: 10.1021/acsomega.4c06759. eCollection 2024 Oct 8.

Abstract

Marine oil and gas resources are abundant in deepwater regions, where the shallow seabed harbors natural gas hydrate layers due to the cold temperature and high-pressure environment. Hydrates are prone to thermal decomposition, which can compromise the integrity of cement sealing and even lead to accidents like blowouts. While current low-hydrated heat cement systems mitigate hydrate decomposition from cement hydration heat during the waiting period for cementing, they do not address heat transfer from deep strata to shallow hydrate layers through fluid circulation in the tubing during deep oil and gas development. Rather than utilizing costly pipe insulation technology, adjusting the thermal conductivity of well cement emerges as a cost-effective approach to prevent heat loss in the wellbore to the hydrate layer and thus inhibit hydrate decomposition. The critical aspect lies in utilizing insulation functional materials. This study delves into the functional and structural design of insulation materials suitable for cement slurry systems in well cementing, outlining the preparation methods and processes for two insulation materials (SDBW and SDBW-II) tailored for deepwater well cementing. SDBW and SDBW-II are both nuclear shell structural materials. The core is made of high-strength hollow microspheres, produced by using a reverse suspension polymerization method to form spheres followed by high-temperature sintering. The shell consists of a wear-resistant BPA epoxy resin layer, with the surface of SDBW-II also containing highly reflective glass microspheres. Incorporating 20% of material SDBW into the cement reduces the thermal conductivity of the cement stone from 0.8 to 0.31 W·(m·K) while achieving a compressive strength of 6 MPa after 24 h at 20 °C. Material SDBW-II offers both thermal resistance and reflection functions, increasing reflectivity () from 0.3 to 0.5. By adding 20% of this material to the cement, under the same conditions, although the compressive strength decreases to 4.2 MPa, the thermal conductivity can be reduced to 0.27 W·(m·K). Furthermore, there is no significant change within 180 days, demonstrating long-term thermal insulation stability. These developed insulation materials can effectively improve the thermal insulation performance of the cement sheath, thereby maintaining the stability of the upper natural gas hydrate layer in the oil and gas production process of deepwater wells, providing an innovative solution for the long-term operation of deepwater oil and gas wells.

摘要

海洋油气资源在深海区域十分丰富,在这些区域,由于低温和高压环境,浅海海底蕴藏着天然气水合物层。水合物易于发生热分解,这会损害水泥密封的完整性,甚至导致井喷等事故。虽然目前的低水化热水泥体系在固井等待期间可减轻因水泥水化热导致的水合物分解,但在深海油气开发过程中,它们无法解决通过油管内流体循环从深层地层向浅层水合物层的热传递问题。与其采用成本高昂的管道保温技术,调整油井水泥的热导率成为一种经济有效的方法,可防止井筒向水合物层的热损失,从而抑制水合物分解。关键在于利用保温功能材料。本研究深入探讨了适用于油井固井水泥浆体系的保温材料的功能和结构设计,概述了两种为深水油井固井量身定制的保温材料(SDBW和SDBW-II)的制备方法和工艺。SDBW和SDBW-II均为核壳结构材料。核心由高强度空心微球制成,通过反向悬浮聚合法形成球体,然后进行高温烧结。外壳由耐磨的双酚A环氧树脂层组成,SDBW-II的表面还含有高反射玻璃微球。在水泥中掺入20%的SDBW材料,可使水泥石的热导率从0.8降低至0.31W·(m·K),同时在20℃下养护24小时后抗压强度达到6MPa。SDBW-II材料兼具耐热和反射功能,反射率从0.3提高到0.5。在相同条件下,向水泥中添加20%的该材料,虽然抗压强度降至4.2MPa,但热导率可降至0.27W·(m·K)。此外,在180天内无明显变化,表明具有长期保温稳定性。这些研发的保温材料可有效提高水泥环的保温性能,从而在深水油井的油气生产过程中维持上部天然气水合物层的稳定性,为深水油气井的长期运营提供了创新解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754f/11466305/2d1fd29217c0/ao4c06759_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验