Chen Xinlu, Xu Meimei, Han Jin, Schmidt-Dannert Mark, Peters Reuben J, Chen Feng
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
Hortic Res. 2024 Aug 3;11(10):uhae221. doi: 10.1093/hr/uhae221. eCollection 2024 Oct.
Land plants are well-known producers of terpenoids that play diverse roles in plant-environment interactions. The vast chemical diversity of terpenoids is initiated by terpene synthases. Plants contain a distinct mid-sized terpene synthase gene family termed , which appears to have an ancient origin in a fused bacterial Class I (di)terpene synthase (TS) and Class II diterpene cyclase (DTC), corresponding to the catalytically relevant α-domain and βγ-didomains, respectively. However, while such fused tridomain bifunctional (Class I/II) diterpene cyclases/synthases (DCSs) have been found in plants (and fungi), no examples have been reported from bacteria, leaving the origin of the fusion event initiating the gene family opaque. Here, the discovery of such tridomain bifunctional DCSs in bacteria is reported. Extensive genome mining unearthed five putative bacterial DCSs, with biochemical characterization revealing the expected bifunctional activity for three. The most intriguing was CseDCS from bacterium, which produces -kaurene, an intermediate in plant hormone biosynthesis, as this is the hypothesized activity for the ancestral . Unlike the extant functionally equivalent , it was possible to split CseDCS into separate, independently acting DTC and TS, with the first producing the expected -copalyl diphosphate (CPP), serving as a CPP synthase (CPS), while the second converts this to -kaurene, serving as a kaurene synthase (KS). Nevertheless, sequence alignment and mutation analysis revealed intriguing similarities between this cyanobacterial fused CPS-KS and functionally equivalent . Regardless of the exact relationship, the discovery of fused bifunctional DCSs in bacteria supports the hypothesized origin of the plant family from such a bacterial gene.
陆地植物是众所周知的萜类化合物生产者,这些萜类化合物在植物与环境的相互作用中发挥着多种作用。萜类化合物巨大的化学多样性是由萜烯合酶引发的。植物含有一个独特的中等大小的萜烯合酶基因家族,称为 ,它似乎起源于一个古老的融合细菌I类(二)萜烯合酶(TS)和II类二萜环化酶(DTC),分别对应于催化相关的α结构域和βγ双结构域。然而,虽然在植物(和真菌)中发现了这种融合的三结构域双功能(I/II类)二萜环化酶/合酶(DCS),但尚未在细菌中发现相关实例,这使得引发 基因家族的融合事件的起源不明。在此,报道了在细菌中发现这种三结构域双功能DCS。广泛的基因组挖掘发现了五个推定的细菌DCS,生化特性表明其中三个具有预期的双功能活性。最有趣的是来自 细菌的CseDCS,它产生 -贝壳杉烯,这是植物激素生物合成中的一种中间体,因为这是祖先 的假设活性。与现存功能等效的 不同,可以将CseDCS拆分为单独的、独立起作用的DTC和TS,第一个产生预期的 -柯巴基焦磷酸(CPP),作为CPP合酶(CPS),而第二个将其转化为 -贝壳杉烯,作为贝壳杉烯合酶(KS)。尽管如此,序列比对和突变分析揭示了这种蓝藻融合CPS-KS与功能等效的 之间有趣的相似性。无论确切关系如何,在细菌中发现融合双功能DCS支持了植物 家族起源于这种细菌基因的假设。