Suppr超能文献

利用机器学习解码多波段脑电图特征以预测重度抑郁症的重复经颅磁刺激治疗反应

Multiband EEG signature decoded using machine learning for predicting rTMS treatment response in major depression.

作者信息

Arteaga Alexander, Tong Xiaoyu, Zhao Kanhao, Carlisle Nancy B, Oathes Desmond J, Fonzo Gregory A, Keller Corey J, Zhang Yu

机构信息

Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.

Department of Psychology, Lehigh University, Bethlehem, PA, USA.

出版信息

medRxiv. 2024 Sep 23:2024.09.22.24314146. doi: 10.1101/2024.09.22.24314146.

Abstract

Major depressive disorder (MDD) is a global health challenge with high prevalence. Further, many diagnosed with MDD are treatment resistant to traditional antidepressants. Repetitive transcranial magnetic stimulation (rTMS) offers promise as an alternative solution, but identifying objective biomarkers for predicting treatment response remains underexplored. Electroencephalographic (EEG) recordings are a cost-effective neuroimaging approach, but traditional EEG analysis methods often do not consider patient-specific variations and fail to capture complex neuronal dynamics. To address this, we propose a data-driven approach combining iterated masking empirical mode decomposition (itEMD) and sparse Bayesian learning (SBL). Our results demonstrated significant prediction of rTMS outcomes using this approach (Protocol 1: r=0.40, p<0.01; Protocol 2: r=0.26, p<0.05). From the decomposition, we obtained three key oscillations: IMF-Alpha, IMF-Beta, and the remaining residue. We also identified key spatial patterns associated with treatment outcomes for two rTMS protocols: for Protocol 1 (10Hz left DLPFC), important areas include the left frontal and parietal regions, while for Protocol 2 (1Hz right DLPFC), the left and frontal, left parietal regions are crucial. Additionally, our exploratory analysis found few significant correlations between oscillation specific predictive features and personality measures. This study highlights the potential of machine learning-driven EEG analysis for personalized MDD treatment prediction, offering a pathway for improved patient outcomes.

摘要

重度抑郁症(MDD)是一项全球性的健康挑战,患病率很高。此外,许多被诊断为MDD的患者对传统抗抑郁药具有治疗抵抗性。重复经颅磁刺激(rTMS)有望成为一种替代解决方案,但识别预测治疗反应的客观生物标志物仍未得到充分探索。脑电图(EEG)记录是一种经济高效的神经影像学方法,但传统的EEG分析方法通常不考虑患者的个体差异,无法捕捉复杂的神经元动态。为了解决这个问题,我们提出了一种结合迭代掩蔽经验模态分解(itEMD)和稀疏贝叶斯学习(SBL)的数据驱动方法。我们的结果表明,使用这种方法可以显著预测rTMS的结果(方案1:r=0.40,p<0.01;方案2:r=0.26,p<0.05)。通过分解,我们获得了三个关键振荡:IMF-阿尔法、IMF-贝塔和其余的残差。我们还确定了与两种rTMS方案治疗结果相关的关键空间模式:对于方案1(左背外侧前额叶皮质10Hz),重要区域包括左额叶和顶叶区域,而对于方案2(右背外侧前额叶皮质1Hz),左额叶和左顶叶区域至关重要。此外,我们的探索性分析发现,振荡特定预测特征与人格测量之间几乎没有显著相关性。这项研究突出了机器学习驱动的EEG分析在个性化MDD治疗预测中的潜力,为改善患者预后提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd6/11469383/05409fea08b9/nihpp-2024.09.22.24314146v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验