Suppr超能文献

使用 dipcensR 进行数字 PCR 阈值稳健性分析和优化。

Digital PCR threshold robustness analysis and optimization using dipcensR.

机构信息

Digital PCR Center (DIGPCR), Ghent University, Ghent, Belgium.

Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae507.

Abstract

Digital polymerase chain reaction (dPCR) is a best-in-class molecular biology technique for the accurate and precise quantification of nucleic acids. The recent maturation of dPCR technology allows the quantification of up to thousands of targeted nucleic acids per instrument per day. A key step in the dPCR data analysis workflow is the classification of partitions into two classes based on their partition intensities: partitions either containing or lacking target nucleic acids of interest. Much effort has been invested in the design and tailoring of automated dPCR partition classification procedures, and such procedures will be increasingly important as the technology ventures into high-throughput applications. However, automated partition classification is not fail-safe, and evaluation of its accuracy is highly advised. This accuracy evaluation is a manual endeavor and is becoming a bottleneck for high-throughput dPCR applications. Here, we introduce dipcensR, the first data-analysis procedure that automates the assessment of any linear partition classifier's partition classification accuracy, offering potentially substantial efficiency gains. dipcensR is based on a robustness evaluation of said partition classification and flags classifications with low robustness as needing review. Additionally, dipcensR's robustness analysis underpins (optional) automatic optimization of partition classification to achieve maximal robustness. A freely available R implementation supports dipcensR's use.

摘要

数字聚合酶链式反应(dPCR)是一种用于准确、精确定量核酸的一流分子生物学技术。最近,dPCR 技术的成熟使得每天每台仪器可以定量多达数千种靶向核酸。dPCR 数据分析工作流程的一个关键步骤是根据其分区强度将分区分为两类:包含或不包含目标感兴趣核酸的分区。已经投入了大量精力来设计和定制自动化 dPCR 分区分类程序,随着该技术进入高通量应用,此类程序将变得越来越重要。然而,自动化分区分类并非万无一失,强烈建议对其准确性进行评估。这种准确性评估是一项手动工作,并且正成为高通量 dPCR 应用的瓶颈。在这里,我们引入了 dipcensR,这是第一个自动评估任何线性分区分类器的分区分类准确性的数据分析程序,它提供了潜在的显著效率提升。dipcensR 基于对所述分区分类的稳健性评估,并将稳健性低的分类标记为需要审查。此外,dipcensR 的稳健性分析支持(可选)自动优化分区分类以实现最大稳健性。一个免费提供的 R 实现支持 dipcensR 的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3003/11472245/c919bc46a393/bbae507f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验