Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Soft Matter. 2024 Oct 30;20(42):8455-8467. doi: 10.1039/d4sm00867g.
Colloidal model systems are successful in rationalizing emergent phenomena like aggregation, rheology and phase behaviour of protein solutions. Colloidal theory in conjunction with isotropic interaction models is often employed to estimate the stability of such solutions. In particular, a universal criterion for the reduced second virial coefficient at the critical point is frequently invoked which is based on the behavior of short-range attractive fluids (Noro-Frenkel rule, ). However, if anisotropic models for the protein-protein interaction are considered, the Kern-Frenkel (KF) patchy particle model, the value of the criterion is shifted to lower values and explicitly depends on the number of patches. If an explicit shape anisotropy is considered, as in a coarse-grained protein model, the normalization of becomes ambiguous to some extent, as no unique exclusion volume can be defined anymore. Here, we investigate a low-resolution, coarse-grained model for the globular protein bovine serum albumin (BSA) and study effects of charge-anisotropy on the phase diagram (determined by simulations) at the isoelectric point. We present methods of assigning an "effective patchiness" to our protein model by comparing its critical properties to the KF model. We find that doubling the native charges increases the critical temperature by ≈14% and that our BSA model can be compared to a 3 to 5 patch KF model. Finally, we argue that applying existing criteria from colloidal theory should be done with care, due to multiple, physically plausible ways of how to assign effective diameters to shape-anisotropic models.
胶态模型系统在合理化聚集、流变学和蛋白质溶液的相行为等新兴现象方面非常成功。胶态理论结合各向同性相互作用模型通常用于估计此类溶液的稳定性。特别是,经常援引临界点的简化第二维里系数的通用准则,该准则基于短程吸引力流体的行为(Noro-Frenkel 规则,)。然而,如果考虑蛋白质-蛋白质相互作用的各向异性模型,Kern-Frenkel (KF) 补丁粒子模型,该准则的值会转移到较低的值,并明确取决于补丁的数量。如果考虑明确的形状各向异性,如在粗粒化蛋白质模型中,归一化在某种程度上变得不明确,因为不再可以定义唯一的排斥体积。在这里,我们研究了球形蛋白质牛血清白蛋白 (BSA) 的低分辨率粗粒化模型,并研究了在等电点处电荷各向异性对相图(通过模拟确定)的影响。我们通过将其临界性质与 KF 模型进行比较,提出了为我们的蛋白质模型分配“有效各向异性”的方法。我们发现将天然电荷增加一倍会将临界温度提高约 14%,并且我们的 BSA 模型可以与 3 到 5 个补丁 KF 模型进行比较。最后,我们认为由于存在多种物理上合理的方法可以将有效直径分配给形状各向异性模型,因此应该谨慎应用胶体理论中的现有准则。