Chang J J, Julesz B
AT & T Bell Laboratories, Murray Hill, NJ 07974.
Spat Vis. 1985;1(1):39-45. doi: 10.1163/156856885x00062.
In this study, we investigated the cooperative and non-cooperative models of stereopsis on apparent movement of the short-range process using spatial frequency filtered random-dot cinematograms. Our results showed that when spatial frequencies were below 4 cycles/degree, maximum displacement (dmax) was decreasing (linearly) with increasing mean frequencies, but at 4 cycles/degree and above dmax stayed constant. For low frequencies, non-cooperative models such as Marr and Poggio's could explain these findings, but not for frequencies above 4 cycles/degree. However, in a previous study we found that the average cooperative neighbourhood for apparent movement of the short-range process is 15 arc min. This fortuitous agreement on 4 cycles/degree could suggest that dmax being constant at frequencies above 4 cycles is related to a cooperative process.