Androulakis E, Marwaha S, Dikaros N, Bhatia R, MacLachlan H, Fyazz S, Chatrath N, Merghani A, Finocchiaro G, Sharma S, Papadakis M
St George's University London, London, UK.
Hellenic Ministry of Interior, Administrative Reform and e-Governance, Athens, Greece.
Clin Res Cardiol. 2024 Oct 14. doi: 10.1007/s00392-024-02550-y.
Non-specific myocardial fibrosis (NSMF) is a heterogeneous entity. We aimed to evaluate young athletes with and without NSMF to establish potentially clinically significance.
We analysed data from 328 young athletes. We identified 61 with NSMF and compared them with 75 matched controls. Athletes with NSMF were divided into Group 1 (n = 28) with 'minor' fibrosis and Group 2 (n = 33) with non-insertion point fibrosis, defined as 'major'. Athletes were followed-up for adverse events. Finally, we tested various machine learning (ML) algorithms to create a prediction model for 'major' fibrosis. We created 4 different classifiers.
Athletes of black ethnicity were more likely to have a subepicardial pattern (OR: 5.0, p = 0.004). Athletes with 'major' fibrosis demonstrated a higher prevalence of lateral T-wave inversion (TWI) ( < 0.001) and ventricular arrhythmias (VEs > 500/24 h, p = 0.046; non-sustained VT, p = 0.043). Athletes with 'minor' fibrosis demonstrated higher right ventricular volumes (p = 0.013), maximum Watts (p = 0.022) and maximum VO (p = 0.005). Lateral TWI (p = 0.026) and VO < 44 mL/min/Kg (p = 0.040) remained the only significant predictors for 'major' fibrosis. During follow up, athletes with 'major' fibrosis were 9.1 times more likely to exhibit adverse events (OR 13.4, p = 0.041). All ML models outperformed the benchmark method in predicting significant MF, best accuracy achieved by the random forest classifier (90%).
Lateral TWI and reduced exercise performance are associated with higher burden of fibrosis. Fibrosis was associated with increased ventricular arrhythmia and adverse events. A comprehensive assessment can help develop a ML-based model for significant fibrosis, which could also guide clinical practice and appropriate CMR referrals.
非特异性心肌纤维化(NSMF)是一种异质性疾病。我们旨在评估有和没有NSMF的年轻运动员,以确定其潜在的临床意义。
我们分析了328名年轻运动员的数据。我们确定了61名患有NSMF的运动员,并将他们与75名匹配的对照组进行比较。患有NSMF的运动员被分为1组(n = 28),为“轻度”纤维化,2组(n = 33)为非插入点纤维化,定义为“重度”。对运动员进行不良事件随访。最后,我们测试了各种机器学习(ML)算法,以创建一个“重度”纤维化的预测模型。我们创建了4种不同的分类器。
黑人运动员更有可能出现心外膜下模式(OR:5.0,p = 0.004)。患有“重度”纤维化的运动员出现侧壁T波倒置(TWI)(<0.001)和室性心律失常(室性早搏>500/24小时,p = 0.046;非持续性室性心动过速,p = 0.043)的患病率更高。患有“轻度”纤维化的运动员右心室容积更大(p = 0.013)、最大功率(p = 0.022)和最大摄氧量(p = 0.005)更高。侧壁TWI(p = 0.026)和摄氧量<44 mL/min/Kg(p = 0.040)仍然是“重度”纤维化的唯一显著预测因素。在随访期间,患有“重度”纤维化的运动员出现不良事件的可能性高9.1倍(OR 13.4,p = 0.041)。所有ML模型在预测显著心肌纤维化方面均优于基准方法,随机森林分类器实现的最佳准确率为90%。
侧壁TWI和运动表现下降与更高的纤维化负担相关。纤维化与室性心律失常和不良事件增加有关。全面评估有助于开发基于ML的显著纤维化模型,这也可以指导临床实践和适当的心脏磁共振成像转诊。