Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
Bull Math Biol. 2024 Oct 14;86(12):137. doi: 10.1007/s11538-024-01363-4.
The mechanism of cytoplasmic incompatibility (CI) is important in the study of Wolbachia invasion in wild mosquitoes. Su et al. (Bull Math Biol 84(9):95, 2022) proposed a delay differential equation model by relating the CI effect to maturation delay. In this paper, we investigate the dynamics of this model by allowing the same density-dependent death rate and distinct density-independent death rates. Through analyzing the existence and stability of equilibria, we obtain the parameter conditions for Wolbachia successful invasion if the maternal transmission is perfect. While if the maternal transmission is imperfect, we give the ranges of parameters to ensure failure invasion, successful invasion and partially suppressing, respectively. Meanwhile, numerical simulations indicate that the system may exhibit monostable and bistable dynamics when parameters vary. Particularly, in the bistable situation an unstable separatrix, like a line, exists when choosing constant functions as initial values; and the maturation delay affects this separatrix in an interesting way.
细胞质不亲和性(CI)的机制在沃尔巴克氏体对野生蚊子的入侵研究中很重要。Su 等人(Bull Math Biol 84(9):95, 2022)通过将 CI 效应与成熟延迟相关联,提出了一个时滞微分方程模型。在本文中,我们通过允许相同的密度依赖死亡率和不同的密度独立死亡率来研究这个模型的动力学。通过分析平衡点的存在和稳定性,我们得到了母体传播完美时沃尔巴克氏体成功入侵的参数条件。而如果母体传播不完美,我们分别给出了参数范围,以确保入侵失败、成功入侵和部分抑制。同时,数值模拟表明,当参数变化时,系统可能表现出单稳和双稳动力学。特别是,在双稳情况下,当选择常数函数作为初始值时,存在一条不稳定的分离线;而成熟延迟以一种有趣的方式影响这条分离线。