Suppr超能文献

从与新冠病毒相关的癌症检测中断中恢复。

Recovery From COVID-19-Related Disruptions in Cancer Detection.

机构信息

Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, California.

Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio.

出版信息

JAMA Netw Open. 2024 Oct 1;7(10):e2439263. doi: 10.1001/jamanetworkopen.2024.39263.

Abstract

IMPORTANCE

The COVID-19 pandemic impacted the timely diagnosis of cancer, which persisted as the second leading cause of death in the US throughout the pandemic.

OBJECTIVE

To evaluate the disruption and potential recovery in cancer detection during the first (2020) and second (2021) years of the COVID-19 pandemic.

DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study involved an epidemiologic analysis of nationally representative, population-based cancer incidence data from the Surveillance, Epidemiology, and End Results (SEER) Program. Included patients were diagnosed with incident cancer from January 1, 2000, through December 31, 2021. The analysis was conducted in May 2024 using the April 2024 SEER data release, which includes incidence data through December 31, 2021.

EXPOSURES

Diagnosis of cancer during the first 2 years of the COVID-19 pandemic (2020, 2021).

MAIN OUTCOMES AND MEASURES

Difference between the expected and observed cancer incidence in 2020 compared with 2021, with additional analyses by demographic subgroups (sex, race and ethnicity, and age group) and community (county-level) characteristics.

RESULTS

The analysis included 15 831 912 patients diagnosed with invasive cancer between 2000 and 2021, including 759 810 patients in 2020 and 825 645 in 2021. The median age was 65 years (IQR, 56-75 years), and 51.0% were male. The percentage difference between the expected and observed cancer incidence was -8.6% (95% CI, -9.1% to -8.1%) in 2020, with no significant difference in 2021 (-0.2%; 95% CI, -0.7% to 0.4%). These translated to a cumulative (2020-2021) deficit in observed vs expected cases of -127 931 (95% CI, -139 206 to -116 655). Subgroup analyses revealed that incidence rates remained substantially depressed from expected rates into 2021 for patients living in the most rural counties (-4.9%; 95% CI, -6.7% to -3.1%). The cancer sites with the largest cumulative deficit in observed vs expected cases included lung and bronchus (-24 940 cases; 95% CI, -28 936 to -20 944 cases), prostate (-14 104 cases; 95% CI, -27 472 to -736 cases), and melanoma (-10 274 cases; 95% CI, -12 825 to -7724 cases).

CONCLUSIONS AND RELEVANCE

This cross-sectional study of nationally representative registry data found that cancer incidence recovered meaningfully in 2021 following substantial disruptions in 2020. However, incidence rates need to recover further to address the substantial number of patients with undiagnosed cancer during the pandemic.

摘要

重要性

COVID-19 大流行影响了癌症的及时诊断,这在大流行期间一直是美国第二大死亡原因。

目的

评估 COVID-19 大流行期间的第一年(2020 年)和第二年(2021 年)癌症检测的中断和潜在恢复情况。

设计、地点和参与者:这是一项基于人群的、全国代表性的癌症发病率的横断面研究,来自监测、流行病学和最终结果(SEER)计划。纳入的患者是在 2000 年 1 月 1 日至 2021 年 12 月 31 日期间诊断为新发癌症的患者。分析于 2024 年 5 月进行,使用 2024 年 4 月发布的 SEER 数据,其中包括截至 2021 年 12 月 31 日的发病率数据。

暴露

COVID-19 大流行的头两年(2020 年、2021 年)诊断为癌症。

主要结果和测量

与 2021 年相比,2020 年预期和观察到的癌症发病率之间的差异,以及按人口统计学亚组(性别、种族和民族以及年龄组)和社区(县一级)特征进行的额外分析。

结果

分析包括 2000 年至 2021 年间诊断为侵袭性癌症的 15831912 例患者,其中 2020 年有 759810 例,2021 年有 825645 例。中位年龄为 65 岁(IQR,56-75 岁),51.0%为男性。2020 年,预期与观察到的癌症发病率之间的百分比差异为-8.6%(95%CI,-9.1%至-8.1%),2021 年没有显著差异(0.2%;95%CI,-0.7%至 0.4%)。这导致观察到的病例与预期病例的累积(2020-2021 年)差值为 127931 例(95%CI,139206 至 116655 例)。亚组分析显示,对于居住在最偏远县的患者,发病率仍明显低于预期,下降了 4.9%(95%CI,6.7%至 3.1%)。观察到的病例与预期病例的累积差值最大的癌症部位包括肺和支气管(-24940 例;95%CI,-28936 至-20944 例)、前列腺(-14104 例;95%CI,-27472 至-736 例)和黑色素瘤(-10274 例;95%CI,-12825 至-7724 例)。

结论和相关性

这项基于全国代表性登记处数据的横断面研究发现,2021 年癌症发病率在 2020 年大幅下降后,有了显著的恢复。然而,发病率需要进一步恢复,以解决大流行期间大量未确诊癌症患者的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f8/11474412/9f99d8efef5f/jamanetwopen-e2439263-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验