Suppr超能文献

一个负责多胺转运和修饰的基因簇可提高番茄的耐盐性。

A gene cluster for polyamine transport and modification improves salt tolerance in tomato.

作者信息

Yang Jie, Zhang Zhonghui, Li Xianggui, Guo Langchen, Li Chun, Lai Jun, Han Yige, Ye Weizhen, Miao Yuanyuan, Deng Meng, Cao Peng, Zhang Yueran, Ding Xiangyu, Zhang Jianing, Yang Jun, Wang Shouchuang

机构信息

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China.

National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China.

出版信息

Plant J. 2024 Dec;120(5):1706-1723. doi: 10.1111/tpj.17074. Epub 2024 Oct 14.

Abstract

Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a HO transport protein, to maintain HO homeostasis. Polyamine-derived HO linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the HO-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.

摘要

多胺作为保护化合物,可直接保护植物免受胁迫相关的损害,同时还作为信号分子参与严重的非生物胁迫。然而,这些作用背后的分子机制尚不清楚。在这里,我们利用代谢组全基因组关联研究来调查野生和栽培番茄品种的多胺含量,并且我们发现了一个在番茄驯化过程中驱动多胺含量的新基因簇。该基因簇包含两个多酚氧化酶(SlPPOE和SlPPOF)、两个BAHD酰基转移酶(SlAT4和SlAT5)、一个香豆酰辅酶A连接酶(Sl4CL6)和一个多胺摄取转运蛋白(SlPUT3)。SlPUT3介导多胺的摄取和运输,而其他五个基因参与多胺修饰。进一步的耐盐性试验表明,与野生型(WT)相比,SlPPOE、SlPPOF和SlAT5过表达株系表现出更高的酚酰胺积累和耐盐性。同时,与WT相比,向SlPUT3-OE株系外源施加亚精胺(Spm)显示出耐盐性,而在slput3株系中则产生相反的效果,这证实了多胺和酚酰胺可通过减轻细胞损伤发挥保护作用。SlPUT3与水通道蛋白SlPIP2;4相互作用,以维持水通道稳态。多胺衍生的水通道将Spm与胁迫反应联系起来,表明Spm信号激活胁迫反应途径。总的来说,我们的发现揭示了水通道-多胺-酚酰胺模块协同增强了番茄的盐胁迫耐受性,并为番茄抗逆育种提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验