Cui Wentao, Long Qingqing, Liu Wenhao, Fang Chen, Wang Xuezhi, Wang Pengfei, Zhou Yuanchun
IEEE J Biomed Health Inform. 2025 Jan;29(1):690-699. doi: 10.1109/JBHI.2024.3476490. Epub 2025 Jan 7.
Gene regulatory networks (GRNs) are crucial for understanding gene regulation and cellular processes. Inferring GRNs helps uncover regulatory pathways, shedding light on the regulation and development of cellular processes. With the rise of high-throughput sequencing and advancements in computational technology, computational models have emerged as cost-effective alternatives to traditional experimental studies. Moreover, the surge in ChIP-seq data for TF-DNA binding has catalyzed the development of graph neural network (GNN)-based methods, greatly advancing GRN inference capabilities. However, most existing GNN-based methods suffer from the inability to capture long-distance structural semantic correlations due to transitive interactions. In this paper, we introduce a novel GNN-based model named Hierarchical Graph Transformer with Contrastive Learning for GRN (HGTCGRN) inference. HGTCGRN excels at capturing structural semantics using a hierarchical graph Transformer, which introduces a series of gene family nodes representing gene functions as virtual nodes to interact with nodes in the GRNS. These semantic-aware virtual-node embeddings are aggregated to produce node representations with varying emphasis. Additionally, we leverage gene ontology information to construct gene interaction networks for contrastive learning optimization of GRNs. Experimental results demonstrate that HGTCGRN achieves superior performance in GRN inference.
基因调控网络(GRNs)对于理解基因调控和细胞过程至关重要。推断基因调控网络有助于揭示调控途径,从而深入了解细胞过程的调控和发展。随着高通量测序的兴起以及计算技术的进步,计算模型已成为传统实验研究的经济高效替代方案。此外,用于转录因子 - DNA结合的ChIP-seq数据的激增推动了基于图神经网络(GNN)的方法的发展,极大地提升了基因调控网络推断能力。然而,由于传递相互作用,大多数现有的基于GNN的方法难以捕捉长距离结构语义相关性。在本文中,我们引入了一种名为用于基因调控网络推断的具有对比学习的分层图变换器(HGTCGRN)的新型基于GNN的模型。HGTCGRN擅长使用分层图变换器捕捉结构语义,该变换器引入了一系列代表基因功能的基因家族节点作为虚拟节点,与基因调控网络中的节点进行交互。这些语义感知虚拟节点嵌入被聚合以产生具有不同侧重点的节点表示。此外,我们利用基因本体信息构建基因相互作用网络,用于基因调控网络的对比学习优化。实验结果表明,HGTCGRN在基因调控网络推断中取得了卓越的性能。