State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2401523121. doi: 10.1073/pnas.2401523121. Epub 2024 Oct 14.
Asymmetric seasonal warming trends are evident across terrestrial ecosystems, with winter temperatures rising more than summer ones. Yet, the impact of such asymmetric seasonal warming on soil microbial carbon metabolism and growth remains poorly understood. Using O isotope labeling, we examined the effects of a decade-long experimental seasonal warming on microbial carbon use efficiency (CUE) and growth in alpine grassland ecosystems. Moreover, the quantitative stable isotope probing with O-HO was employed to evaluate taxon-specific bacterial growth in these ecosystems. Results show that symmetric year-round warming decreased microbial growth rate by 31% and CUE by 22%. Asymmetric winter warming resulted in a further decrease in microbial growth rate of 27% and microbial CUE of 59% compared to symmetric year-round warming. Long-term warming increased microbial carbon limitations, especially under asymmetric winter warming. Long-term warming suppressed the growth rates of most bacterial genera, with asymmetric winter warming having a stronger inhibition on the growth rates of specific genera (e.g., , , , , and ) compared to symmetric year-round warming. Bacterial growth was phylogenetically conserved, but this conservation diminished under warming conditions, primarily due to shifts in bacterial physiological states rather than the number of bacterial species and community composition. Overall, long-term warming escalated microbial carbon limitations, decreased microbial growth and CUE, with asymmetric winter warming having a more pronounced effect. Understanding these impacts is crucial for predicting soil carbon cycling as global warming progresses.
陆地生态系统中存在明显的非对称季节变暖趋势,冬季气温上升幅度超过夏季。然而,这种非对称季节变暖对土壤微生物碳代谢和生长的影响仍知之甚少。本研究采用 O 同位素标记法,研究了长达十年的季节性变暖实验对高山草原生态系统中微生物碳利用效率(CUE)和生长的影响。此外,我们还利用 O-HO 定量稳定同位素探测技术评估了这些生态系统中特定细菌的生长情况。结果表明,全年对称变暖使微生物生长速率降低了 31%,CUE 降低了 22%。与全年对称变暖相比,非对称冬季变暖使微生物生长速率进一步降低了 27%,微生物 CUE 降低了 59%。长期变暖增加了微生物对碳的限制,尤其是在非对称冬季变暖的情况下。长期变暖抑制了大多数细菌属的生长速率,与全年对称变暖相比,非对称冬季变暖对特定属(如 、 、 、 、 和 )的生长速率有更强的抑制作用。细菌生长在系统发育上是保守的,但在变暖条件下这种保守性减弱,主要是由于细菌生理状态的变化,而不是细菌种类和群落组成的变化。总之,长期变暖加剧了微生物对碳的限制,降低了微生物的生长和 CUE,而非对称冬季变暖的影响更为显著。了解这些影响对于预测全球变暖背景下土壤碳循环至关重要。