Jiang Xin, Qin Shucheng, Meng Lei, He Guorui, Zhang Jinyuan, Wang Yiyang, Zhu Yiqiao, Zou Tianwei, Gong Yufei, Chen Zekun, Sun Guangpei, Liu Minchao, Li Xiaojun, Lang Felix, Li Yongfang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
Nature. 2024 Nov;635(8040):860-866. doi: 10.1038/s41586-024-08160-y. Epub 2024 Oct 14.
In recent years, perovskite has been widely adopted in series-connected monolithic tandem solar cells (TSCs) to overcome the Shockley-Queisser limit of single-junction solar cells. Perovskite-organic TSCs, comprising a wide-bandgap (WBG) perovskite solar cell (pero-SC) as the front cell and a narrow-bandgap organic solar cell (OSC) as the rear cell, have recently drawn attention owing to the good stability and potential high power conversion efficiency (PCE). However, WBG pero-SCs usually exhibit higher voltage losses than regular pero-SCs, which limits the performance of TSCs. One of the main obstacles comes from interfacial recombination at the perovskite-C interface, and it is important to develop effective surface passivation strategies to pursue higher PCE of perovskite-organic TSCs. Here we exploit a new surface passivator cyclohexane 1,4-diammonium diiodide (CyDAI), which naturally contains two isomeric structures with ammonium groups on the same or opposite sides of the hexane ring (denoted as cis-CyDAI and trans-CyDAI, respectively), and the two isomers demonstrate completely different surface interaction behaviours. The cis-CyDAI passivation treatment reduces the quasi-Fermi-level splitting-open circuit voltage (V) mismatch of the WBG pero-SCs with a bandgap of 1.88 eV and enhanced its V to 1.36 V. Combining the cis-CyDAI-treated perovskite and the organic active layer with a narrow bandgap of 1.27 eV, the constructed monolithic perovskite-organic TSC demonstrates a PCE of 26.4% (certified as 25.7%).
近年来,钙钛矿已被广泛应用于串联式单片叠层太阳能电池(TSCs)中,以克服单结太阳能电池的肖克利-奎伊瑟极限。钙钛矿-有机叠层太阳能电池由宽带隙(WBG)钙钛矿太阳能电池(pero-SC)作为前电池和窄带隙有机太阳能电池(OSC)作为后电池组成,由于其良好的稳定性和潜在的高功率转换效率(PCE),最近受到了关注。然而,WBG钙钛矿太阳能电池通常比常规钙钛矿太阳能电池表现出更高的电压损失,这限制了叠层太阳能电池的性能。主要障碍之一来自钙钛矿-C界面处的界面复合,开发有效的表面钝化策略对于追求更高的钙钛矿-有机叠层太阳能电池的功率转换效率至关重要。在这里,我们开发了一种新型表面钝化剂环己烷-1,4-二碘化二铵(CyDAI),它天然含有两种异构体结构,铵基团位于己烷环的同侧或异侧(分别表示为顺式-CyDAI和反式-CyDAI),这两种异构体表现出完全不同的表面相互作用行为。顺式-CyDAI钝化处理减少了带隙为1.88 eV的WBG钙钛矿太阳能电池的准费米能级分裂-开路电压(V)失配,并将其V提高到1.36 V。将顺式-CyDAI处理的钙钛矿与窄带隙为1.27 eV的有机活性层相结合,构建的单片钙钛矿-有机叠层太阳能电池的功率转换效率为26.4%(经认证为25.7%)。