Niu Meng, Qin Shun-Yao, Wang Bai-Qian, Chen Nian-Ke, Li Xian-Bin
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China.
J Phys Condens Matter. 2024 Nov 1;37(4). doi: 10.1088/1361-648X/ad8696.
Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent Aphonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.
实时含时密度泛函理论分子动力学(rt - TDDFT - MD)揭示了具有佩尔斯畸变(PD)的典型相变材料锑(Sb)中超快光致结构转变的非绝热动力学。随着激发强度从3.54%增加到5.00%,在1皮秒内观察到三种不同的结构转变行为:无PD翻转、类非挥发性PD翻转和不停的来回PD翻转。对电子 - 声子和声子 - 声子耦合的分析表明,通过电子 - 声子耦合激发激活的相干A声子模式在几百飞秒内驱动结构转变。然后,相干运动的能量通过声子 - 声子耦合转化为随机热运动的能量,这阻止了类A模式的相干结构振荡。随着激发强度的增加,电子 - 声子耦合和相干运动会增强。因此,能够平衡相干和退相干热运动的适度激发强度将导致类非挥发性PD翻转。这些发现说明了非绝热电子 - 声子/声子 - 声子耦合在具有PD的材料中超快激光诱导结构转变中的重要作用,为通过光操纵其结构和性质提供了见解。