Lobo João, Zein-Sabatto Bassel, Lal Priti, Netto George J
Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.
Mod Pathol. 2025 Jan;38(1):100631. doi: 10.1016/j.modpat.2024.100631. Epub 2024 Oct 12.
Bladder cancer (BC) remains a major disease burden in terms of incidence, morbidity, mortality, and economic cost. Deciphering the intrinsic molecular subtypes and identification of key drivers of BC has yielded successful novel therapeutic strategies. Advances in computational and digital pathology are reshaping the field of anatomical pathology. This review offers an update on the most relevant computational algorithms in digital pathology that have been proposed to enhance BC management. These tools promise to enhance diagnostics, staging, and grading accuracy and streamline efficiency while advancing practice consistency. Computational applications that enable intrinsic molecular classification, predict response to neoadjuvant therapy, and identify targets of therapy are also reviewed.
膀胱癌(BC)在发病率、发病率、死亡率和经济成本方面仍然是一个主要的疾病负担。破译膀胱癌的内在分子亚型并确定其关键驱动因素已产生了成功的新型治疗策略。计算病理学和数字病理学的进展正在重塑解剖病理学领域。本综述提供了数字病理学中最相关的计算算法的最新进展,这些算法已被提出用于加强膀胱癌的管理。这些工具有望提高诊断、分期和分级的准确性,提高效率,同时促进实践的一致性。还综述了能够进行内在分子分类、预测新辅助治疗反应和识别治疗靶点的计算应用。