Suppr超能文献

语义整合数字病理学:微观流行病学语义学与图像分析可扩展性洞察

Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability.

作者信息

Racoceanu Daniel, Capron Frédérique

出版信息

Pathobiology. 2016;83(2-3):148-55. doi: 10.1159/000443964. Epub 2016 Apr 26.

Abstract

Being able to provide a traceable and dynamic second opinion has become an ethical priority for patients and health care professionals in modern computer-aided medicine. In this perspective, a semantic cognitive virtual microscopy approach has been recently initiated, the MICO project, by focusing on cognitive digital pathology. This approach supports the elaboration of pathology-compliant daily protocols dedicated to breast cancer grading, in particular mitotic counts and nuclear atypia. A proof of concept has thus been elaborated, and an extension of these approaches is now underway in a collaborative digital pathology framework, the FlexMIm project. As important milestones on the way to routine digital pathology, a series of pioneer international benchmarking initiatives have been launched for mitosis detection (MITOS), nuclear atypia grading (MITOS-ATYPIA) and glandular structure detection (GlaS), some of the fundamental grading components in diagnosis and prognosis. These initiatives allow envisaging a consolidated validation referential database for digital pathology in the very near future. This reference database will need coordinated efforts from all major teams working in this area worldwide, and it will certainly represent a critical bottleneck for the acceptance of all future imaging modules in clinical practice. In line with recent advances in molecular imaging and genetics, keeping the microscopic modality at the core of future digital systems in pathology is fundamental to insure the acceptance of these new technologies, as well as for a deeper systemic, structured comprehension of the pathologies. After all, at the scale of routine whole-slide imaging (WSI; ∼0.22 µm/pixel), the microscopic image represents a structured 'genomic cluster', enabling a naturally structured support for integrative digital pathology approaches. In order to accelerate and structure the integration of this heterogeneous information, a major effort is and will continue to be devoted to morphological microsemiology (microscopic morphology semantics). Besides insuring the traceability of the results (second opinion) and supporting the orchestration of high-content image analysis modules, the role of semantics will be crucial for the correlation between digital pathology and noninvasive medical imaging modalities. In addition, semantics has an important role in modelling the links between traditional microscopy and recent label-free technologies. The massive amount of visual data is challenging and represents a characteristic intrinsic to digital pathology. The design of an operational integrative microscopy framework needs to focus on scalable multiscale imaging formalism. In this sense, we prospectively consider some of the most recent scalable methodologies adapted to digital pathology as marked point processes for nuclear atypia and point-set mathematical morphology for architecture grading. To orchestrate this scalable framework, semantics-based WSI management (analysis, exploration, indexing, retrieval and report generation support) represents an important means towards approaches to integrating big data into biomedicine. This insight reflects our vision through an instantiation of essential bricks of this type of architecture. The generic approach introduced here is applicable to a number of challenges related to molecular imaging, high-content image management and, more generally, bioinformatics.

摘要

在现代计算机辅助医学中,能够提供可追溯且动态的第二意见已成为患者和医疗保健专业人员的一项伦理优先事项。从这个角度来看,最近启动了一种语义认知虚拟显微镜方法,即MICO项目,专注于认知数字病理学。这种方法支持制定符合病理学的日常方案,专门用于乳腺癌分级,特别是有丝分裂计数和核异型性。因此已经阐述了一个概念验证,并且这些方法的扩展目前正在一个协作数字病理学框架FlexMIm项目中进行。作为迈向常规数字病理学道路上的重要里程碑,已经针对有丝分裂检测(MITOS)、核异型性分级(MITOS - ATYPIA)和腺结构检测(GlaS)发起了一系列开创性的国际基准测试倡议,这些是诊断和预后中一些基本的分级组成部分。这些倡议使得能够在不久的将来设想一个用于数字病理学的综合验证参考数据库。这个参考数据库将需要全球所有在该领域工作的主要团队的协同努力,并且它肯定会成为临床实践中接受所有未来成像模块的关键瓶颈。与分子成像和遗传学的最新进展一致,将微观模式作为病理学未来数字系统的核心对于确保这些新技术的接受以及对病理学进行更深入的系统、结构化理解至关重要。毕竟,在常规全切片成像(WSI;约0.22 µm/像素)的尺度上,微观图像代表一个结构化的“基因组簇”,为综合数字病理学方法提供了自然结构化的支持。为了加速和构建这种异构信息的整合,一项重大努力已经并且将继续致力于形态学微观语义学(微观形态语义)。除了确保结果的可追溯性(第二意见)并支持高内涵图像分析模块的编排外,语义学对于数字病理学与非侵入性医学成像模式之间的相关性也将至关重要。此外,语义学在建模传统显微镜与最近的无标记技术之间的联系方面具有重要作用。大量的视觉数据具有挑战性,并且是数字病理学的一个固有特征。一个可操作的综合显微镜框架的设计需要专注于可扩展的多尺度成像形式。从这个意义上说,我们前瞻性地考虑一些适用于数字病理学的最新可扩展方法,如用于核异型性的标记点过程和用于结构分级的点集数学形态学。为了编排这个可扩展框架,基于语义的WSI管理(分析、探索、索引、检索和报告生成支持)是将大数据集成到生物医学方法中的重要手段。这种见解通过实例化这种类型架构的基本要素反映了我们的愿景。这里介绍的通用方法适用于与分子成像、高内涵图像管理以及更一般的生物信息学相关的许多挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验