Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.
Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.
Magn Reson Med. 2023 Apr;89(4):1368-1384. doi: 10.1002/mrm.29521. Epub 2022 Nov 20.
To develop a free-breathing myocardial mapping technique using inversion-recovery (IR) radial fast low-angle shot (FLASH) and calibrationless motion-resolved model-based reconstruction.
Free-running (free-breathing, retrospective cardiac gating) IR radial FLASH is used for data acquisition at 3T. First, to reduce the waiting time between inversions, an analytical formula is derived that takes the incomplete recovery into account for an accurate calculation. Second, the respiratory motion signal is estimated from the k-space center of the contrast varying acquisition using an adapted singular spectrum analysis (SSA-FARY) technique. Third, a motion-resolved model-based reconstruction is used to estimate both parameter and coil sensitivity maps directly from the sorted k-space data. Thus, spatiotemporal total variation, in addition to the spatial sparsity constraints, can be directly applied to the parameter maps. Validations are performed on an experimental phantom, 11 human subjects, and a young landrace pig with myocardial infarction.
In comparison to an IR spin-echo reference, phantom results confirm good accuracy, when reducing the waiting time from 5 s to 1 s using the new correction. The motion-resolved model-based reconstruction further improves precision compared to the spatial regularization-only reconstruction. Aside from showing that a reliable respiratory motion signal can be estimated using modified SSA-FARY, in vivo studies demonstrate that dynamic myocardial maps can be obtained within 2 min with good precision and repeatability.
Motion-resolved myocardial mapping during free-breathing with good accuracy, precision and repeatability can be achieved by combining inversion-recovery radial FLASH, self-gating and a calibrationless motion-resolved model-based reconstruction.
开发一种使用反转恢复(IR)径向快速小角度激发(FLASH)和无校准运动分辨率模型重建的自由呼吸心肌映射技术。
在 3T 上使用自由运行(自由呼吸,回顾性心脏门控)IR 径向 FLASH 进行数据采集。首先,为了减少反转之间的等待时间,推导出一个考虑不完全恢复的解析公式,以便准确计算。其次,使用自适应奇异谱分析(SSA-FARY)技术从对比度变化采集的 k 空间中心估计呼吸运动信号。第三,使用运动分辨率模型重建直接从排序的 k 空间数据中估计参数和线圈灵敏度图。因此,时空全变差可以直接应用于参数图,除了空间稀疏性约束之外。在实验性体模、11 名人类受试者和患有心肌梗死的年轻长白猪上进行验证。
与 IR 自旋回波参考相比,体模结果证实,当使用新校正将等待时间从 5 秒减少到 1 秒时,具有很好的准确性。与仅空间正则化重建相比,运动分辨率模型重建进一步提高了精度。除了证明可以使用改进的 SSA-FARY 可靠地估计呼吸运动信号外,体内研究还表明,使用良好的精度和可重复性可以在 2 分钟内获得动态心肌图。
通过组合反转恢复径向 FLASH、自门控和无校准运动分辨率模型重建,可以实现具有良好准确性、精度和可重复性的自由呼吸心肌映射。