Suppr超能文献

通过偶极-偶极相互作用实现的温度响应溶剂化助力宽温度钠离子电池

Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries.

作者信息

Wang Meilong, Yin Luming, Zheng Mengting, Liu Xiaowei, Yang Chao, Hu Wenxi, Xie Jingjing, Sun Ruitao, Han Jin, You Ya, Lu Jun

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China.

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.

出版信息

Nat Commun. 2024 Oct 14;15(1):8866. doi: 10.1038/s41467-024-53259-5.

Abstract

Rechargeable batteries with high durability over wide temperature is needed in aerospace and submarine fields. Unfortunately, Current battery technologies suffer from limited operating temperatures due to the rapid performance decay at extreme temperatures. A major challenge for wide-temperature electrolyte design lies in restricting the parasitic reactions at elevated temperatures while improving the reaction kinetics at low temperatures. Here, we demonstrate a temperature-adaptive electrolyte design by regulating the dipole-dipole interactions at various temperatures to simultaneously address the issues at both elevated and subzero temperatures. This approach prevents electrolyte degradation while endowing it with the ability to undergo adaptive changes as temperature varies. Such electrolyte favors to form solvation structure with high thermal stability with rising temperatures and transits to one that prevents salt precipitation at lower temperatures. This ensures stably within a wide temperature range of ‒60 -55 °C. This temperature-adaptive electrolyte opens an avenue for wide-temperature electrolyte design, highlighting the significance of dipole-dipole interactions in regulating solvation structures.

摘要

航空航天和潜艇领域需要在很宽温度范围内具有高耐久性的可充电电池。不幸的是,由于在极端温度下性能迅速衰减,目前的电池技术存在工作温度受限的问题。宽温度电解质设计的一个主要挑战在于限制高温下的寄生反应,同时提高低温下的反应动力学。在此,我们通过调节不同温度下的偶极 - 偶极相互作用来展示一种温度自适应电解质设计,以同时解决高温和零下温度下的问题。这种方法可防止电解质降解,同时赋予其随温度变化进行自适应变化的能力。这种电解质有利于随着温度升高形成具有高热稳定性的溶剂化结构,并在较低温度下转变为防止盐沉淀的结构。这确保了在 -60至55°C的宽温度范围内稳定运行。这种温度自适应电解质为宽温度电解质设计开辟了一条途径,突出了偶极 - 偶极相互作用在调节溶剂化结构中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/11473825/e3778b58f2bd/41467_2024_53259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验