Zhang Hao, Zhao Yan, Li Xiangrong, Wang Haoliang, Wang Lu, Song Yongli, Qiao Fen, Wang Junfeng, Xu Jijian
Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China.
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
Adv Sci (Weinh). 2025 Aug;12(32):e03151. doi: 10.1002/advs.202503151. Epub 2025 May 21.
Conventional lithium-ion batteries (LIBs) employing ethylene carbonate (EC)-based electrolytes and thermally unstable LiPF face dual challenges: sluggish Li-ion transport at low temperatures (≤-20 °C) and severe decomposition at elevated temperatures (≥45 °C). Herein, a synergistic cation-anion solvation engineering strategy is presented for wide-temperature electrolytes, combining EC-free carbonate solvents with a thermally stable ternary lithium salt system. By fine-tuning solvent-salt interactions, the designed electrolyte exhibits facilitated desolvation kinetics and superior ionic conductivity under subzero temperatures (0.19 mS cm at -60 °C), while also maintaining excellent high-temperature stability. The anion-participated solvation structure induces an inorganic-rich cathode-electrolyte interphase (CEI), effectively stabilizing the interfacial phase of LiCoO (LCO) under high voltages. Consequently, the LCO cathode with this electrolyte demonstrates robust performance under wide-temperature operations. At 4.6 V (versus Li/Li), it retains 88.9% of its capacity after 400 cycles at 25 °C and 77.3% after 200 cycles at 45 °C. Remarkably, a reversible capacity of 110.1 and a discharge capacity of 92.6 mAh g are delivered at -35 and -60 °C, respectively, highlighting its exceptional performance under extreme temperatures. This research pioneers a cation-anion solvation design for tailored electrolytes, enabling reliable LIB operation across a wide temperature range.
采用碳酸乙烯酯(EC)基电解质和热不稳定的LiPF的传统锂离子电池(LIB)面临双重挑战:在低温(≤-20°C)下锂离子传输缓慢,在高温(≥45°C)下严重分解。在此,提出了一种用于宽温电解质的协同阳离子-阴离子溶剂化工程策略,将无EC的碳酸盐溶剂与热稳定的三元锂盐体系相结合。通过微调溶剂-盐相互作用,设计的电解质在零下温度下(-60°C时为0.19 mS cm)表现出促进的去溶剂化动力学和优异的离子电导率,同时还保持了出色的高温稳定性。阴离子参与的溶剂化结构诱导了富含无机成分的阴极-电解质界面(CEI),有效地稳定了高电压下LiCoO(LCO)的界面相。因此,使用这种电解质的LCO阴极在宽温操作下表现出强劲的性能。在4.6 V(相对于Li/Li)时,它在25°C下400次循环后保留其容量的88.9%,在45°C下200次循环后保留77.3%。值得注意的是,在-35°C和-60°C下分别提供了110.1的可逆容量和92.6 mAh g的放电容量,突出了其在极端温度下的卓越性能。这项研究开创了用于定制电解质的阳离子-阴离子溶剂化设计,使LIB能够在宽温度范围内可靠运行。