Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
Sci Rep. 2024 Oct 14;14(1):24064. doi: 10.1038/s41598-024-72427-7.
Malaria is a deadly disease caused by Plasmodium parasites. While potent drugs are available in the market for malaria treatment, over the years, Plasmodium parasites have successfully developed resistance against many, if not all, front-line drugs. This poses a serious threat to global malaria eradication efforts, and the continued discovery of new drugs is necessary to tackle this debilitating disease. With recent unprecedented progress in machine learning techniques, single-cell transcriptomic in Plasmodium offers a powerful tool for identifying crucial proteins as a drug target and subsequent computational prediction of potential drugs. In this study, We have implemented a mutual-information-based feature reduction algorithm with a classification algorithm to select important proteins from transcriptomic datasets (sexual and asexual stages) for Plasmodium falciparum and then constructed the protein-protein interaction (PPI) networks of the proteins. The analysis of this PPI network revealed key proteins vital for the survival of Plasmodium falciparum. Based on the function and identification of a few strong binding sites on a couple of these key proteins, we computationally predicted a set of potential drug molecules using a deep learning-based technique. Lead drug molecules that satisfy ADMET and drug-likeliness properties are finally reported out of the generated drugs. The study offers a general computational pipeline to identify crucial proteins using scRNA-seq data sets and further development of potential new drugs.
疟疾是一种由疟原虫引起的致命疾病。虽然市场上有强效药物可用于治疗疟疾,但多年来,疟原虫已成功对许多(如果不是全部)一线药物产生了耐药性。这对全球消除疟疾的努力构成了严重威胁,需要不断发现新的药物来应对这种使人衰弱的疾病。随着机器学习技术的最新进展,疟原虫的单细胞转录组学为鉴定关键蛋白作为药物靶点以及随后对潜在药物进行计算预测提供了强大工具。在这项研究中,我们实施了一种基于互信息的特征减少算法和分类算法,从转录组数据集(有性和无性阶段)中选择重要的蛋白用于恶性疟原虫,然后构建这些蛋白的蛋白-蛋白相互作用(PPI)网络。该 PPI 网络的分析揭示了恶性疟原虫生存所必需的关键蛋白。基于这些关键蛋白上少数几个强结合位点的功能和鉴定,我们使用基于深度学习的技术计算预测了一组潜在的药物分子。最后,从生成的药物中报告了符合 ADMET 和药物似然性特性的先导药物分子。该研究提供了一种使用 scRNA-seq 数据集识别关键蛋白的通用计算流程,并进一步开发潜在的新药。