Suppr超能文献

使用非线性相对曲率度量比较四种光响应模型。

Comparison of four light-response models using relative curvature measures of nonlinearity.

机构信息

School of Architecture, Huaqiao University, Xiamen, 361021, China.

Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China.

出版信息

Sci Rep. 2024 Oct 14;14(1):24058. doi: 10.1038/s41598-024-75325-0.

Abstract

Photosynthetic light response curves serve as powerful mathematical tools for quantitatively describing the rate of photosynthesis of plants in response to changes in irradiance. However, in practical applications, the daunting task of selecting an appropriate nonlinear model to accurately fit these curves persists as a significant challenge. Thus, there arises a need for a method to systematically evaluate the efficacy of such models. In the present study, four distinct nonlinear models, namely Exponential Model (EM), Rectangular Hyperbola Model (RHM), Nonrectangular Hyperbola Model (NHM), and Modified Rectangular Hyperbola Model (MRHM), were used to fit the relationship between light intensity and the rate of photosynthesis across 42 empirical datasets. The goodness of fit for each model was assessed using the root-mean-square error, and relative curvature measures of nonlinearity were employed to assess the nonlinear behavior of the models. In terms of goodness of fit, pairwise difference tests of the root-mean-square error revealed that there was little to choose among the four models, although RHM gave a marginally poorer fit. However, in terms of nonlinear behavior, EM not only provided the most favorable linear approximation performance at the global level, but also exhibited the best close-to-linear behavior at the individual parameter level among the four models across the 42 datasets. Consequently, the results strongly advocate for EM as the most suitable mathematical framework for fitting photosynthetic light response curves. These findings provide insights into the model assessment for nonlinear regression in describing the relationship between the photosynthetic rate and light intensity.

摘要

光合作用光响应曲线是一种强大的数学工具,可用于定量描述植物对光照强度变化的光合作用速率。然而,在实际应用中,选择合适的非线性模型来准确拟合这些曲线仍然是一项艰巨的任务。因此,需要一种方法来系统地评估这些模型的效果。本研究使用了四种不同的非线性模型,即指数模型 (EM)、矩形双曲线模型 (RHM)、非矩形双曲线模型 (NHM) 和修正矩形双曲线模型 (MRHM),来拟合 42 个经验数据集的光强与光合作用速率之间的关系。使用均方根误差评估每个模型的拟合优度,使用非线性的相对曲率度量来评估模型的非线性行为。在拟合优度方面,均方根误差的成对差异检验表明,虽然 RHM 的拟合稍差,但四种模型之间几乎没有什么区别。然而,在非线性行为方面,EM 不仅在全局水平上提供了最有利的线性近似性能,而且在 42 个数据集的个体参数水平上表现出了最好的接近线性行为。因此,结果强烈支持 EM 作为拟合光合作用光响应曲线的最合适的数学框架。这些发现为描述光合作用速率与光强之间关系的非线性回归模型评估提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce6f/11473669/3a0951765882/41598_2024_75325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验