Suppr超能文献

使用ColabFold进行简单而准确的蛋白质结构预测。

Easy and accurate protein structure prediction using ColabFold.

作者信息

Kim Gyuri, Lee Sewon, Levy Karin Eli, Kim Hyunbin, Moriwaki Yoshitaka, Ovchinnikov Sergey, Steinegger Martin, Mirdita Milot

机构信息

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.

School of Biological Sciences, Seoul National University, Seoul, South Korea.

出版信息

Nat Protoc. 2025 Mar;20(3):620-642. doi: 10.1038/s41596-024-01060-5. Epub 2024 Oct 14.

Abstract

Since its public release in 2021, AlphaFold2 (AF2) has made investigating biological questions, by using predicted protein structures of single monomers or full complexes, a common practice. ColabFold-AF2 is an open-source Jupyter Notebook inside Google Colaboratory and a command-line tool that makes it easy to use AF2 while exposing its advanced options. ColabFold-AF2 shortens turnaround times of experiments because of its optimized usage of AF2's models. In this protocol, we guide the reader through ColabFold best practices by using three scenarios: (i) monomer prediction, (ii) complex prediction and (iii) conformation sampling. The first two scenarios cover classic static structure prediction and are demonstrated on the human glycosylphosphatidylinositol transamidase protein. The third scenario demonstrates an alternative use case of the AF2 models by predicting two conformations of the human alanine serine transporter 2. Users can run the protocol without computational expertise via Google Colaboratory or in a command-line environment for advanced users. Using Google Colaboratory, it takes <2 h to run each procedure. The data and code for this protocol are available at https://protocol.colabfold.com .

摘要

自2021年公开发布以来,AlphaFold2(AF2)通过使用单个单体或完整复合物的预测蛋白质结构来研究生物学问题已成为一种常见做法。ColabFold-AF2是谷歌Colaboratory中的一个开源Jupyter Notebook和一个命令行工具,它能在展示AF2高级选项的同时方便用户使用。由于对AF2模型的优化使用,ColabFold-AF2缩短了实验周转时间。在本方案中,我们通过三种场景引导读者了解ColabFold的最佳实践:(i)单体预测,(ii)复合物预测和(iii)构象采样。前两种场景涵盖经典的静态结构预测,并以人糖基磷脂酰肌醇转酰胺酶蛋白为例进行演示。第三种场景通过预测人丙氨酸丝氨酸转运蛋白2的两种构象展示了AF2模型的另一种应用案例。用户无需计算专业知识即可通过谷歌Colaboratory运行该方案,高级用户也可在命令行环境中运行。使用谷歌Colaboratory,每个程序运行时间不到2小时。本方案的数据和代码可在https://protocol.colabfold.com获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验