Suppr超能文献

利用 trRosettaX2、AlphaFold2 和优化的 MSAs 在 CASP15 中提高蛋白质结构预测。

Improved protein structure prediction with trRosettaX2, AlphaFold2, and optimized MSAs in CASP15.

机构信息

MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China.

School of Mathematical Sciences, Nankai University, Tianjin, China.

出版信息

Proteins. 2023 Dec;91(12):1704-1711. doi: 10.1002/prot.26570. Epub 2023 Aug 10.

Abstract

We present the monomer and multimer structure prediction results of our methods in CASP15. We first designed an elaborate pipeline that leverages complementary sequence databases and advanced database searching algorithms to generate high-quality multiple sequence alignments (MSAs). Top MSAs were then selected for the subsequent step of structure prediction. We utilized trRosettaX2 and AlphaFold2 for monomer structure prediction (group name Yang-Server), and AlphaFold-Multimer for multimer structure prediction (group name Yang-Multimer). Yang-Server and Yang-Multimer are ranked at the top and the fourth, respectively, for monomer and multimer structure prediction. For 94 monomers, the average TM-score of the predicted structure models by Yang-Server is 0.876, compared to 0.798 by the default AlphaFold2 (i.e., the group NBIS-AF2-standard). For 42 multimers, the average DockQ score of the predicted structure models by Yang-Multimer is 0.464, compared to 0.389 by the default AlphaFold-Multimer (i.e., the group NBIS-AF2-multimer). Detailed analysis of the results shows that several factors contribute to the improvement, including improved MSAs, iterated modeling for large targets, interplay between monomer and multimer structure prediction for intertwined structures, etc. However, the structure predictions for orphan proteins and multimers remain challenging, and breakthroughs in this area are anticipated in the future.

摘要

我们在 CASP15 中展示了我们的方法的单体和多聚体结构预测结果。我们首先设计了一个精心设计的管道,利用互补的序列数据库和先进的数据库搜索算法来生成高质量的多重序列比对(MSAs)。然后,选择顶级 MSAs 进行下一步的结构预测。我们使用 trRosettaX2 和 AlphaFold2 进行单体结构预测(组名 Yang-Server),并使用 AlphaFold-Multimer 进行多聚体结构预测(组名 Yang-Multimer)。Yang-Server 和 Yang-Multimer 在单体和多聚体结构预测中分别排名第一和第四。对于 94 个单体,Yang-Server 预测结构模型的平均 TM 分数为 0.876,而默认的 AlphaFold2 为 0.798(即组 NBIS-AF2-standard)。对于 42 个多聚体,Yang-Multimer 预测结构模型的平均 DockQ 分数为 0.464,而默认的 AlphaFold-Multimer 为 0.389(即组 NBIS-AF2-multimer)。对结果的详细分析表明,几个因素促成了改进,包括改进的 MSAs、大型目标的迭代建模、单体和多聚体结构预测之间的相互作用对于交织结构等。然而,孤儿蛋白和多聚体的结构预测仍然具有挑战性,预计未来在这一领域会有突破。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验