Suppr超能文献

可注射、释氧、热敏水凝胶通过延长氧气输送和改善骨诱导性促进血管化骨形成。

Injectable, oxygen-releasing, thermosensitive hydrogel promotes vascularized bone formation with prolonged oxygen delivery and improved osteoinductivity.

作者信息

Xu Yixin, Zheng Shaowei, Tang Zinan, Zhong Qiang, Chen Rong, Wang Pinkai, Fu Jinlang, Xie Jiajun, Ning Yanhong, Lei Mingyuan, Wang Ding, Mai Huaming, Li Hao, Sun Chunhan, Shi Zhanjun, Cheng Hao, Shi Zhe

机构信息

Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

Department of Orthopedic,Huizhou First Hospital,Guangdong Medical University,Huizhou,516003,China.

出版信息

Mater Today Bio. 2024 Sep 27;29:101267. doi: 10.1016/j.mtbio.2024.101267. eCollection 2024 Dec.

Abstract

The failure or delay in healing of critical bone defects is primarily due to early local anoxic conditions and reduced osteogenic activity. In this research, we integrated calcium peroxide (CPO) embedded polycaprolactone (PCL) microspheres and osteoinductive nanoparticles (Hydroxyapatite/Laponite) into a thermosensitive hydrogel (Pluronic F127), thereby formulating an injectable oxygen-releasing osteogenic thermosensitive hydrogel. Notably, the oxygen-releasing microspheres (ORMs) within the composite hydrogel provide stable oxygen release for up to 21 days, ensuring the survival, migration, and bioactivity of both mesenchymal stem cells and endothelial cells under anoxic conditions. Additionally, the composite hydrogel significantly augments the osteogenic potential of bone marrow mesenchymal stem cells by providing a biomimetic microenvironment with the incorporation of nano-hydroxyapatite/laponite. Ultimately, the injectable composite hydrogel successfully stimulated bone regeneration within a cranial defect in a rat model after 8 weeks, with enhanced vascularization and bone quality. The engineered hydrogel provides a minimally invasive approach to stimulate bone regeneration with a sustained oxygen supply and osteogenic microenvironment provision, underlining its potential for treating critical bone defects.

摘要

关键骨缺损愈合失败或延迟主要归因于早期局部缺氧状况和成骨活性降低。在本研究中,我们将包裹过氧化钙(CPO)的聚己内酯(PCL)微球和骨诱导纳米颗粒(羟基磷灰石/锂皂石)整合到一种热敏水凝胶(泊洛沙姆F127)中,从而制备出一种可注射的释氧成骨热敏水凝胶。值得注意的是,复合水凝胶中的释氧微球(ORMs)可提供长达21天的稳定氧气释放,确保间充质干细胞和内皮细胞在缺氧条件下的存活、迁移及生物活性。此外,复合水凝胶通过掺入纳米羟基磷灰石/锂皂石提供仿生微环境,显著增强了骨髓间充质干细胞的成骨潜能。最终,这种可注射复合水凝胶在8周后成功刺激大鼠颅骨缺损模型内的骨再生,血管化和骨质量均得到改善。这种工程化水凝胶提供了一种微创方法来刺激骨再生,具有持续供氧量和成骨微环境,突显了其治疗关键骨缺损的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a756/11471675/2a3d78053f24/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验