文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Targeted regulation of autophagy using sorafenib-loaded biomineralization nanoenzyme for enhanced photodynamic therapy of hepatoma.

作者信息

Lu Tianming, Liu Zixian, Qian Ruoning, Zhou Yitian, Li Jun, Zhang Qiang, Yang Hao, Lu Wenli, Xin Yanlin, Xie Zejuan, Yan Lesan, Wang Shanshan, Qi Ruogu, Zhang Zhengguang

机构信息

School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China.

出版信息

Mater Today Bio. 2024 Sep 24;29:101270. doi: 10.1016/j.mtbio.2024.101270. eCollection 2024 Dec.


DOI:10.1016/j.mtbio.2024.101270
PMID:39403315
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11472109/
Abstract

Sorafenib (SF), a multi-targeted tyrosine kinase inhibitor, serves as a primary therapeutic modality for advanced liver cancer. Nonetheless, its clinical efficacy is hindered by various obstacles, such as limited bioavailability and inadequate accumulation. This study introduces a novel biomimetic mineralization enzyme, known as BSA@Pt/Ce6/SF@M (PCFM). The PCFM incorporates platinum (Pt) as a catalytic agent, SF as a molecular-targeted therapeutic agent, and Ce6 as a photosensitizer within liver cancer cell membranes. This strategy enables the combination of various anti-tumor treatments, such as photodynamic therapy (PDT) and autophagy induction, leading to increased bioavailability of SF and achieving a multidimensional synergistic anticancer effect. The PDT effect produced by Ce6 in PCFM greatly enhances SF-induced autophagy, effectively promoting autophagic cell death. Furthermore, Pt dissociates from the biomineralization process, acquiring peroxidase properties through chemokinetic reactions. This facilitates the catalysis of significant oxygen generation, addressing the challenge of hypoxia in the tumor microenvironment and improving the efficacy of PDT. Moreover, the SF further enhances therapeutic efficacy by inducing autophagy in response to energy deprivation, as indicated by the reduced levels of HIF-1α, p62, along with increased levels of ROS and LC3-Ⅱ/Ι. This biomineralization-based nanoenzyme exhibits strong anti-tumor characteristics, offering a novel strategy for overcoming challenges in liver cancer treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/7514704e5c06/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/d783ea931ebb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/48afdde001fa/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/0efc00388a28/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/2408304523ea/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/c8131eef0e13/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/3692f7cea47f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/3752b1eec7e9/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/bd5f6d991915/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/41fdb89ee59a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/7514704e5c06/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/d783ea931ebb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/48afdde001fa/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/0efc00388a28/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/2408304523ea/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/c8131eef0e13/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/3692f7cea47f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/3752b1eec7e9/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/bd5f6d991915/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/41fdb89ee59a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/11472109/7514704e5c06/gr8.jpg

相似文献

[1]
Targeted regulation of autophagy using sorafenib-loaded biomineralization nanoenzyme for enhanced photodynamic therapy of hepatoma.

Mater Today Bio. 2024-9-24

[2]
Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors.

Acta Biomater. 2022-11

[3]
Hepatoma-Targeting and ROS-Responsive Polymeric Micelle-Based Chemotherapy Combined with Photodynamic Therapy for Hepatoma Treatment.

Int J Nanomedicine. 2024

[4]
Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy.

Acta Biomater. 2021-9-1

[5]
Self-delivery biomedicine for enhanced photodynamic therapy by feedback promotion of tumor autophagy.

Acta Biomater. 2023-3-1

[6]
Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis.

Int J Nanomedicine. 2022

[7]
Hemoglobin nanoclusters-mediated regulation of KPNA4 in hypoxic tumor microenvironment enhances photodynamic therapy in hepatocellular carcinoma.

J Nanobiotechnology. 2024-8-9

[8]
Cepharanthine synergizes with photodynamic therapy for boosting ROS-driven DNA damage and suppressing MTH1 as a potential anti-cancer strategy.

Photodiagnosis Photodyn Ther. 2024-2

[9]
Computed tomography and photoacoustic imaging guided photodynamic therapy against breast cancer based on mesoporous platinum with oxygen generation ability.

Acta Pharm Sin B. 2020-9

[10]
Self-Amplified pH/ROS Dual-Responsive Co-Delivery Nano-System with Chemo-Photodynamic Combination Therapy in Hepatic Carcinoma Treatment.

Int J Nanomedicine. 2024-4-24

本文引用的文献

[1]
An artificial signaling pathway primitive-based intelligent biomimetic nanoenzymes carrier platform for precise treatment of Her2 (+) tumors.

Mater Today Bio. 2024-6-1

[2]
Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine.

Int J Nanomedicine. 2024

[3]
Tumor microenvironment responsive nano-platform for overcoming sorafenib resistance of hepatocellular carcinoma.

Mater Today Bio. 2023-12-15

[4]
Cellular Mechanisms of Singlet Oxygen in Photodynamic Therapy.

Int J Mol Sci. 2023-11-29

[5]
Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis.

Phytomedicine. 2024-1

[6]
Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial.

JAMA Oncol. 2023-12-1

[7]
Sorafenib-Loaded PLGA Carriers for Enhanced Drug Delivery and Cellular Uptake in Liver Cancer Cells.

Int J Nanomedicine. 2023

[8]
Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study.

Lancet. 2023-9-30

[9]
ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis.

Arch Toxicol. 2023-6

[10]
Reactive oxygen species-powered cancer immunotherapy: Current status and challenges.

J Control Release. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索