文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

普鲁士蓝纳米酶载体联合提高光动力治疗和有效阻断肿瘤转移。

Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis.

机构信息

Department of Oncology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, People's Republic of China.

Department of Endocrinology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, People's Republic of China.

出版信息

Int J Nanomedicine. 2022 Mar 25;17:1397-1408. doi: 10.2147/IJN.S359156. eCollection 2022.


DOI:10.2147/IJN.S359156
PMID:35369032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8964450/
Abstract

INTRODUCTION: Photodynamic therapy (PDT) as a new technique for theranostics is to kill tumor cells by activating photosensitizer and interacting with oxygen (O) to produce reactive oxygen species (ROS). However, the hypoxic tumor microenvironment (TME) may constrain the efficacy of PDT. Moreover, the lack of O in TME also up-regulates the expression of HIF-1α and promotes tumor metastasis, which is also a leading cause of death for terminal cancer patients. METHODS: Prussian blue (PBs) was firstly synthesized by hydrothermal method, which was then etched by hydrochloric acid to obtained hollow Prussian blue nanoparticles (HPBs). Afterwards, Au-Pt nanozymes were in situ growing on the HPBs by reduction method to prepare Au-Pt@HPBs (APHPBs). Owing to the hollow structure of APHPBs, photosensitizer Ce6 can be easily and efficiently loaded into it to obtain Ce6-Au-Pt@HPBs (Ce6-APHPBs). After ce6-APHPBS regulation, photoacoustic imaging and hypoxic fluorescence imaging were then used to evaluate changes in hypoxic TME in vivo. Finally, under the assistant of Ce6-APHPBs, we evaluated the inhibitory effect of enhanced PDT on primary and metastatic tumors. RESULTS: We first designed and synthesized Ce6 loaded hollow prussian blue nanoparticles with Au-Pt nanozymes grown in situ on it. Both in vitro and in vivo experiments show that the prepared Ce6-APHPBs have good biosafety and could effectively degrade the overexpressed HO in TME to generate O, further relieve the hypoxic TME and thus enhance the effect of PDT. At the same time, the increasing O content could also reduce the expression of HIF-1α at the tumor site, which could reduce lung metastasis. CONCLUSION: Ce6-APHPBs designed by us could not only efficiently enhance PDT but also regulate TME to reduce tumor metastasis and prolong survival of mice, which provide a novel idea and strategy for clinical PDT and metastatic tumor.

摘要

简介:光动力疗法(PDT)作为一种新的治疗方法,通过激活光敏剂并与氧气(O)相互作用来产生活性氧(ROS)来杀死肿瘤细胞。然而,缺氧的肿瘤微环境(TME)可能会限制 PDT 的疗效。此外,TME 中缺乏 O 也会上调 HIF-1α 的表达并促进肿瘤转移,这也是晚期癌症患者死亡的主要原因。

方法:首先通过水热法合成普鲁士蓝(PBs),然后用盐酸刻蚀得到空心普鲁士蓝纳米粒子(HPBs)。之后,通过还原法原位生长 Au-Pt 纳米酶于 HPBs 上,制备 Au-Pt@HPBs(APHPBs)。由于 APHPBs 的空心结构,光敏剂 Ce6 可以很容易且高效地装载到其中,得到 Ce6-Au-Pt@HPBs(Ce6-APHPBs)。经 Ce6-APHPBS 调控后,用光声成像和缺氧荧光成像评估体内缺氧 TME 的变化。最后,在 Ce6-APHPBs 的辅助下,我们评估了增强 PDT 对原发性和转移性肿瘤的抑制作用。

结果:我们首先设计并合成了负载 Ce6 的空心普鲁士蓝纳米粒子,其表面原位生长 Au-Pt 纳米酶。体外和体内实验均表明,所制备的 Ce6-APHPBs 具有良好的生物安全性,并能有效降解 TME 中过表达的 HO 产生 O,进一步缓解缺氧 TME,从而增强 PDT 的效果。同时,增加 O 含量还可以降低肿瘤部位 HIF-1α 的表达,从而减少肺转移。

结论:我们设计的 Ce6-APHPBs 不仅能有效增强 PDT,还能调节 TME 以减少肿瘤转移并延长小鼠的存活时间,为临床 PDT 和转移性肿瘤提供了新的思路和策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/5eabe8c983b9/IJN-17-1397-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/948dccaf681d/IJN-17-1397-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/4f2988776efc/IJN-17-1397-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/1d5ddf10f0b4/IJN-17-1397-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/fcabf3b4f9e9/IJN-17-1397-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/483ff61232a6/IJN-17-1397-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/5eabe8c983b9/IJN-17-1397-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/948dccaf681d/IJN-17-1397-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/4f2988776efc/IJN-17-1397-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/1d5ddf10f0b4/IJN-17-1397-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/fcabf3b4f9e9/IJN-17-1397-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/483ff61232a6/IJN-17-1397-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7344/8964450/5eabe8c983b9/IJN-17-1397-g0006.jpg

相似文献

[1]
Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis.

Int J Nanomedicine. 2022

[2]
Zinc peroxide-based nanotheranostic platform with endogenous hydrogen peroxide/oxygen generation for enhanced photodynamic-chemo therapy of tumors.

J Colloid Interface Sci. 2024-8-15

[3]
Oxygen Self-Supply Engineering-Ferritin for the Relief of Hypoxia in Tumors and the Enhancement of Photodynamic Therapy Efficacy.

Small. 2022-4

[4]
Construction of PEGylated chlorin e6@CuS-Pt theranostic nanoplatforms for nanozymes-enhanced photodynamic-photothermal therapy.

J Colloid Interface Sci. 2023-9

[5]
Pd@Au Bimetallic Nanoplates Decorated Mesoporous MnO for Synergistic Nucleus-Targeted NIR-II Photothermal and Hypoxia-Relieved Photodynamic Therapy.

Adv Healthc Mater. 2020-1

[6]
Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRI-guided photodynamic/photothermal combined treatment.

Nanotechnology. 2019-11-29

[7]
Multifunctional Nanosnowflakes for T1-T2 Double-Contrast Enhanced MRI and PAI Guided Oxygen Self-Supplementing Effective Anti-Tumor Therapy.

Int J Nanomedicine. 2022

[8]
Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer.

Biomater Sci. 2018-10-24

[9]
Light-triggered photosynthetic engineered bacteria for enhanced-photodynamic therapy by relieving tumor hypoxic microenvironment.

Theranostics. 2023

[10]
PEGylated Prussian blue nanoparticles for modulating polyethyleneimine cytotoxicity and attenuating tumor hypoxia for dual-enhanced photodynamic therapy.

J Mater Chem B. 2022-7-20

引用本文的文献

[1]
Metal hexacyanoferrates in photodynamic and photothermal therapies.

Biophys Rev. 2025-2-20

[2]
Evolution of nMOFs in photodynamic therapy: from porphyrins to chlorins and bacteriochlorins for better efficacy.

Front Pharmacol. 2025-3-18

[3]
Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications.

Exploration (Beijing). 2024-6-28

[4]
Emerging engineered nanozymes: current status and future perspectives in cancer treatments.

Nanoscale Adv. 2025-1-28

[5]
Photo-Thermally Controllable Tumor Metabolic Modulation to Assist T Cell Activation for Boosting Immunotherapy.

Int J Nanomedicine. 2024

[6]
Porphyrin-engineered nanoscale metal-organic frameworks: enhancing photodynamic therapy and ferroptosis in oncology.

Front Pharmacol. 2024-10-23

[7]
Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis.

Pharmaceuticals (Basel). 2023-7-23

[8]
Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology.

Adv Healthc Mater. 2023-10

[9]
The multifunctional Prussian blue/graphitic carbon nitride nanocomposites for fluorescence imaging-guided photothermal and photodynamic combination therapy.

RSC Adv. 2022-12-23

[10]
Progress and prospects of nanozymes for enhanced antitumor therapy.

Front Chem. 2022-12-2

本文引用的文献

[1]
Radioactive nano-oxygen generator enhance anti-tumor radio-immunotherapy by regulating tumor microenvironment and reducing proliferation.

Biomaterials. 2022-1

[2]
Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically.

J Egypt Natl Canc Inst. 2021-11-15

[3]
Recent Advances in Tumor Microenvironment Hydrogen Peroxide-Responsive Materials for Cancer Photodynamic Therapy.

Nanomicro Lett. 2020-1-3

[4]
Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges.

J Nanobiotechnology. 2021-5-29

[5]
Nanobody modified high-performance AIE photosensitizer nanoparticles for precise photodynamic oral cancer therapy of patient-derived tumor xenograft.

Biomaterials. 2021-7

[6]
Plasma membrane targeted photodynamic O economizer for hypoxic tumor therapy.

Biomaterials. 2021-6

[7]
Platelet-Mimicking Therapeutic System for Noninvasive Mitigation of the Progression of Atherosclerotic Plaques.

Adv Sci (Weinh). 2021-4

[8]
HIF-1α promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment.

Cell Death Dis. 2021-4-13

[9]
A hybrid semiconducting organosilica-based O nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy.

Nat Commun. 2021-1-22

[10]
The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment.

Cancer Cell Int. 2021-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索