Suppr超能文献

整合机器学习以推进表位作图。

Integrating machine learning to advance epitope mapping.

机构信息

Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.

Department of Computing Science, University of Alberta, Edmonton, AB, Canada.

出版信息

Front Immunol. 2024 Sep 30;15:1463931. doi: 10.3389/fimmu.2024.1463931. eCollection 2024.

Abstract

Identifying epitopes, or the segments of a protein that bind to antibodies, is critical for the development of a variety of immunotherapeutics and diagnostics. In vaccine design, the intent is to identify the minimal epitope of an antigen that can elicit an immune response and avoid off-target effects. For prognostics and diagnostics, the epitope-antibody interaction is exploited to measure antigens associated with disease outcomes. Experimental methods such as X-ray crystallography, cryo-electron microscopy, and peptide arrays are used widely to map epitopes but vary in accuracy, throughput, cost, and feasibility. By comparing machine learning epitope mapping tools, we discuss the importance of data selection, feature design, and algorithm choice in determining the specificity and prediction accuracy of an algorithm. This review discusses limitations of current methods and the potential for machine learning to deepen interpretation and increase feasibility of these methods. We also propose how machine learning can be employed to refine epitope prediction to address the apparent promiscuity of polyreactive antibodies and the challenge of defining conformational epitopes. We highlight the impact of machine learning on our current understanding of epitopes and its potential to guide the design of therapeutic interventions with more predictable outcomes.

摘要

鉴定表位(与抗体结合的蛋白质片段)对于各种免疫疗法和诊断试剂的开发至关重要。在疫苗设计中,目的是确定能够引发免疫反应并避免脱靶效应的抗原的最小表位。在预后和诊断中,利用表位-抗体相互作用来测量与疾病结果相关的抗原。X 射线晶体学、低温电子显微镜和肽阵列等实验方法被广泛用于绘制表位,但在准确性、通量、成本和可行性方面存在差异。通过比较机器学习表位作图工具,我们讨论了数据选择、特征设计和算法选择在确定算法的特异性和预测准确性方面的重要性。本文讨论了当前方法的局限性以及机器学习在加深解释和增加这些方法的可行性方面的潜力。我们还提出了如何利用机器学习来改进表位预测,以解决多反应性抗体的明显混杂性和定义构象表位的挑战。我们强调了机器学习对我们当前对表位的理解的影响及其指导具有更可预测结果的治疗干预措施设计的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8363/11471525/1fde5a4159a2/fimmu-15-1463931-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验