Toledo-Carrillo Esteban A, García-Rodríguez Mario, Morallón Emilia, Cazorla-Amorós Diego, Ye Fei, Kundi Varun, Kumar Priyank V, Verho Oscar, Dutta Joydeep, Åkermark Bjorn, Das Biswanath
Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain.
Front Chem. 2024 Sep 25;12:1469804. doi: 10.3389/fchem.2024.1469804. eCollection 2024.
Green hydrogen production from water is one attractive route to non-fossil fuel and a potential source of clean energy. Hydrogen is not only a zero-carbon energy source but can also be utilized as an efficient storage of electrical energy generated through various other sources, such as wind and solar. Cost-effective and environmentally benign direct hydrogen production through neutral water (∼pH 7) reduction is particularly challenging due to the low concentration of protons. There is currently a major need for easy-to-prepare, robust, as well as active electrode materials. Herein we report three new molecular electrodes that were prepared by anchoring commercially available, and environmentally benign cobalt-containing electrocatalysts with three different ligand frameworks (porphyrin, phthalocyanine, and corrin) on a structurally modified graphite foil surface. Under the studied reaction conditions (over 7 h at 22°C), the electrode with Co-porphyrin is the most efficient for the water reduction with starting ∼740 mV onset potential (OP) (vs. RHE, current density 2.5 mA/cm) and a Tafel slope (TS) of 103 mV/dec. It is followed by the molecular electrodes having Co-phthalocyanine [825 mV (OP), 138 mV/dec (TS)] and Vitamin-B (Co-corrin moiety) [830 mV (OP), 194 mv/dec (TS)]. A clear time-dependent improvement (>200 mV over 3 h) in the H production overpotential with the Co-porphyrin-containing cathode was observed. This is attributed to the activation due to water coordination to the Co-center. A long-term chronopotentiometric stability test shows a steady production of hydrogen from all three cathode surfaces throughout seven hours, confirmed using an H needle sensor. At a current density of 10 mA/cm, the Co-porphyrin-containing electrode showed a TOF value of 0.45 s at 870 mV vs. RHE, whereas the Co-phthalocyanine and Vitamin-B-containing electrodes showed 0.37 and 0.4 s at 1.22 V and 1.15 V (vs. RHE), respectively.
通过水制绿氢是通往非化石燃料的一条有吸引力的途径,也是一种潜在的清洁能源来源。氢不仅是一种零碳能源,还可以用作通过风能和太阳能等各种其他来源产生的电能的高效存储介质。由于质子浓度低,通过中性水(pH约为7)还原实现具有成本效益且环境友好的直接制氢极具挑战性。目前迫切需要易于制备、坚固且活性高的电极材料。在此,我们报告了三种新型分子电极,它们是通过将市售且环境友好的含钴电催化剂与三种不同的配体框架(卟啉、酞菁和咕啉)锚定在结构改性的石墨箔表面上制备而成。在所研究的反应条件下(22°C下超过7小时),含钴卟啉的电极在水还原方面效率最高,起始过电位(OP)约为740 mV(相对于可逆氢电极,电流密度为2.5 mA/cm²),塔菲尔斜率(TS)为103 mV/dec。其次是含钴酞菁的分子电极[825 mV(OP),138 mV/dec(TS)]和维生素B(含钴咕啉部分)[830 mV(OP),194 mV/dec(TS)]。观察到含钴卟啉阴极上的析氢过电位随时间有明显改善(3小时内超过200 mV)。这归因于水与钴中心配位导致的活化作用。长期计时电位稳定性测试表明,在整个7小时内,所有三个阴极表面都能稳定产氢,这通过氢针传感器得以证实。在电流密度为10 mA/cm²时,含钴卟啉的电极在相对于可逆氢电极870 mV时的TOF值为0.45 s⁻¹,而含钴酞菁和含维生素B的电极在1.22 V和1.15 V(相对于可逆氢电极)时的TOF值分别为0.37 s⁻¹和0.4 s⁻¹。