School of Chemistry, University of New South Wales, Sydney 2052, Australia.
School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia.
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41288-41293. doi: 10.1021/acsami.0c10125. Epub 2020 Sep 4.
Combining the advantages of homogeneous and heterogeneous catalytic systems has emerged as a promising strategy for electrochemical CO reduction although developing robust, active, product-selective, and easily available, catalysts remains a major challenge. Herein, we report the electroreduction of CO catalyzed by cobalt and benzimidazole containing Vitamin B immobilized on the surface of reduced graphene oxide (rGO). This hybrid system with a naturally abundant molecular catalyst produces CO with high selectivity and a constant current density in an aqueous buffer solution (pH 7.2) for over 10 h. A Faradaic efficiency (FE) of 94.5% was obtained for converting CO to CO at an overpotential of 690 mV with a CO partial current density () of 6.24 mA cm and a turnover frequency (TOF) of up to 28.6 s. A higher (13.6 mA cm) and TOF (52.4 s) can be achieved with this system at a higher overpotential (790 mV) without affecting the product selectivity (∼94%) for CO formation. Our experimental findings are corroborated with density functional theory (DFT) studies to understand the influence of the covalently attached and redox-active benzimidazole unit. To the best of our knowledge, this is the first example of naturally abundant vitamin being immobilized on a conductive surface for highly efficient CO electroreduction.
将均相和多相催化体系的优势结合起来,已经成为电化学 CO 还原的一种很有前途的策略,尽管开发稳健、高效、选择性好且易于获得的催化剂仍然是一个主要挑战。在此,我们报告了钴和含苯并咪唑的维生素 B 在还原氧化石墨烯(rGO)表面固定化后对 CO 的电还原。在 pH 值为 7.2 的水溶液缓冲液中,该混合体系在超过 10 小时的时间内,以恒定电流密度,对 CO 具有高选择性和高电流密度。在 690 mV 的过电势下,将 CO 转化为 CO 的法拉第效率(FE)为 94.5%,CO 的部分电流密度()为 6.24 mA cm,转化频率(TOF)高达 28.6 s。在更高的过电势(790 mV)下,该体系可以实现更高的(13.6 mA cm)和更高的 TOF(52.4 s),而对 CO 生成的产物选择性(∼94%)没有影响。我们的实验结果得到了密度泛函理论(DFT)研究的证实,以了解共价连接和氧化还原活性苯并咪唑单元的影响。据我们所知,这是首次将天然存在的维生素固定在导电表面上,用于高效 CO 电还原。