Suppr超能文献

使用人工智能胎盘分析技术对全切片图像进行子痫前期胎盘的识别。

Identification of Preeclamptic Placenta in Whole Slide Images Using Artificial Intelligence Placenta Analysis.

机构信息

Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.

Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea.

出版信息

J Korean Med Sci. 2024 Oct 14;39(39):e271. doi: 10.3346/jkms.2024.39.e271.

Abstract

BACKGROUND

Preeclampsia (PE) is a hypertensive pregnancy disorder linked to placental dysfunction, often involving pathological lesions like acute atherosis, decidual vasculopathy, accelerated villous maturation, and fibrinoid deposition. However, there is no gold standard for the pathological diagnosis of PE and this limits the ability of clinicians to distinguish between PE and non-PE pregnancies. Recent advances in computational pathology have provided the opportunity to automate pathological analysis for diagnosis, classification, prediction, and prediction of disease progression. In this study, we assessed whether computational pathology could be used to identify PE placentas.

METHODS

A total of 168 placental whole-slide images (WSIs) of patients from Seoul National University Hospital (comprising 84 PE cases and 84 normal controls) were used for model development and internal validation. For external validation of the model, 76 placental slides (including 38 PE cases and 38 normal controls) were obtained from the Boramae Medical Center (BMC). To establish standard criteria for diagnosing PE and distinguishing it from controls using placental WSIs, patch characteristics and quantification of terminal and intermediate villi were employed. In unsupervised learning, -means clustering was conducted as a feature obtained through an Auto Encoder to extract the ratio of each cluster for each WSI. For supervised learning, quantitative assessments of the villi were obtained using a U-Net-based segmentation algorithm. The prediction model was developed using an ensemble method and was compared with a clinical feature model developed by using placental size features.

RESULTS

Using ensemble modeling, we developed a model to identify PE placentas. The model showed good performance (area under the precision-recall curve [AUPRC], 0.771; 95% confidence interval [CI], 0.752-0.790), with 77.3% of sensitivity and 71.1% of specificity, whereas the clinical feature model showed an AUPRC 0.713 (95% CI, 0.694-0.732) with 55.6% sensitivity and 86.8% specificity. External validation of the predictive model employing the BMC-derived set of placental slides also showed good discrimination (AUPRC, 0.725; 95% CI, 0.720-0.730).

CONCLUSION

The proposed computational pathology model demonstrated a strong ability to identify preeclamptic placentas. Computational pathology has the potential to improve the identification of PE placentas.

摘要

背景

子痫前期(PE)是一种与胎盘功能障碍相关的妊娠高血压疾病,常伴有急性动脉粥样硬化、蜕膜血管病变、绒毛加速成熟和纤维蛋白样沉积等病理性损伤。然而,PE 的病理诊断尚无金标准,这限制了临床医生区分 PE 与非 PE 妊娠的能力。计算病理学的最新进展为诊断、分类、预测和疾病进展预测提供了自动化病理分析的机会。在这项研究中,我们评估了计算病理学是否可用于识别 PE 胎盘。

方法

共使用了来自首尔国立大学医院的 168 张胎盘全切片图像(WSIs)(包括 84 例 PE 病例和 84 例正常对照组)进行模型开发和内部验证。为了对模型进行外部验证,从宝拉医疗中心(BMC)获得了 76 张胎盘切片(包括 38 例 PE 病例和 38 例正常对照组)。为了使用胎盘 WSIs 建立诊断 PE 并将其与对照区分开来的标准,采用了斑块特征和末端和中间绒毛的量化来进行评估。在无监督学习中,进行了 -means 聚类作为通过自动编码器获得的特征,以提取每个 WSI 的每个聚类的比例。对于有监督学习,使用基于 U-Net 的分割算法对绒毛进行定量评估。使用集成方法开发预测模型,并与使用胎盘大小特征开发的临床特征模型进行比较。

结果

使用集成建模,我们开发了一种识别 PE 胎盘的模型。该模型表现出良好的性能(精度-召回曲线下面积 [AUPRC],0.771;95%置信区间 [CI],0.752-0.790),灵敏度为 77.3%,特异性为 71.1%,而临床特征模型的 AUPRC 为 0.713(95%CI,0.694-0.732),灵敏度为 55.6%,特异性为 86.8%。使用来自 BMC 的胎盘切片集进行的预测模型的外部验证也显示出良好的区分能力(AUPRC,0.725;95%CI,0.720-0.730)。

结论

提出的计算病理学模型表现出识别子痫前期胎盘的强大能力。计算病理学有可能改善子痫前期胎盘的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d217/11473260/fc388500d819/jkms-39-e271-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验