Liu Xu, Yang Yu-Run, Wang Jing, Xu Rui-Ping, Liu Zhao, Liu Ying
Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China.
Beijing Computational Science Research Center, Beijing, 100193, China.
Phys Chem Chem Phys. 2024 Oct 30;26(42):26808-26815. doi: 10.1039/d4cp02261k.
The spatial separation of dopants is crucial in extending the lifetime of nanoribbon p-n junctions, which is traditionally realized van der Waals heterostructures at a high cost. In this study, we employ atomistic quantum mechanical simulations to demonstrate that a simple in-plane bending deformation can lead to an enhanced doping preference in conventional nanoribbons. Dopants with larger atomic sizes than those of host atoms tend to reside on the tensile side close to the outermost edge of the bent nanoribbons, while dopants with smaller atomic sizes than those of host atoms tend to reside on the compressive side close to the innermost edge of the bent nanoribbons. We also show that this doping preference induces an enhanced spatial separation of n-type and p-type dopants with different atomic sizes. As conventional nanoribbons are easier to synthesize and cost-effective, our results provide a pathway for modulating dopant distribution and designing long-lived nanoribbon p-n junctions inhomogeneous strain engineering.
掺杂剂的空间分离对于延长纳米带 p-n 结的寿命至关重要,传统上这是通过范德华异质结构以高昂成本实现的。在本研究中,我们采用原子量子力学模拟来证明,简单的面内弯曲变形可导致传统纳米带中掺杂偏好增强。原子尺寸大于主体原子的掺杂剂倾向于位于靠近弯曲纳米带最外边缘的拉伸侧,而原子尺寸小于主体原子的掺杂剂则倾向于位于靠近弯曲纳米带最内边缘的压缩侧。我们还表明,这种掺杂偏好会导致不同原子尺寸的 n 型和 p 型掺杂剂的空间分离增强。由于传统纳米带更易于合成且具有成本效益,我们的结果为通过非均匀应变工程调节掺杂剂分布和设计长寿命纳米带 p-n 结提供了一条途径。