Wang Hao, Wei Zhiyou, Liu Zhiwei, Zheng Bin, Zhang Zhaoming, Yan Xuzhou, He Linli, Li Tao, Zhao Dong
Department of Physics, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416790. doi: 10.1002/anie.202416790. Epub 2024 Nov 9.
Covalent polymer networks find wide utility in diverse engineering applications owing to their desirable stiffness and resilience. However, the rigid covalent chemical structure between crosslinking points imposes limitations on enhancing their toughness. Although the incorporation of sacrificial chemical bonds has shown promise in improving toughness through energy dissipation, composite networks struggle to maintain both rapid recovery and stiffness. Consequently, a significant challenge persists in achieving a covalent network that combines high strength, stiffness, toughness, and fast recovery performance. To address this challenge, we propose a novel sacrificial structure termed "sacrificial conformation." In this approach, β-cyclodextrin is covalently embedded into the network skeleton as the sacrificial conformation element. Compared to traditional covalent networks (LCN), well-designed cyclodextrin-embedded covalent network (CCN) exhibit a 100-fold increase in Young's modulus and a 60-fold increase in toughness. Importantly, CCN maintains excellent elasticity, ensuring swift recovery after deformation. This sacrificial conformational strategy enables efficient energy dissipation without necessitating the rupture of chemical bonds, thereby overcoming the limitations of traditional approaches. This advancement holds great promise for the design and fabrication of advanced elastomers and hydrogels with superior mechanical properties and dynamic behavior.
共价聚合物网络由于其理想的刚度和弹性,在各种工程应用中有着广泛的用途。然而,交联点之间刚性的共价化学结构限制了其韧性的提高。尽管引入牺牲化学键已显示出通过能量耗散来提高韧性的前景,但复合网络难以同时保持快速恢复和刚度。因此,在实现一种兼具高强度、刚度、韧性和快速恢复性能的共价网络方面,仍然存在重大挑战。为应对这一挑战,我们提出了一种名为“牺牲构象”的新型牺牲结构。在这种方法中,β-环糊精作为牺牲构象元素共价嵌入网络骨架中。与传统共价网络(LCN)相比,精心设计的嵌入环糊精的共价网络(CCN)的杨氏模量提高了100倍,韧性提高了60倍。重要的是,CCN保持了优异的弹性,确保变形后能迅速恢复。这种牺牲构象策略能够实现高效的能量耗散,而无需化学键的断裂,从而克服了传统方法的局限性。这一进展为设计和制造具有卓越机械性能和动态行为的先进弹性体和水凝胶带来了巨大希望。