Suppr超能文献

通过八重氢键同时增强和硬化弹性体

Simultaneously Toughening and Stiffening Elastomers with Octuple Hydrogen Bonding.

作者信息

Zhuo Yizhi, Xia Zhijie, Qi Yuan, Sumigawa Takashi, Wu Jianyang, Šesták Petr, Lu Yinan, Håkonsen Verner, Li Tong, Wang Feng, Chen Wei, Xiao Senbo, Long Rong, Kitamura Takayuki, Li Liangbin, He Jianying, Zhang Zhiliang

机构信息

NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.

National Synchrotron Radiation Lab, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Adv Mater. 2021 Jun;33(23):e2008523. doi: 10.1002/adma.202008523. Epub 2021 May 3.

Abstract

Current synthetic elastomers suffer from the well-known trade-off between toughness and stiffness. By a combination of multiscale experiments and atomistic simulations, a transparent unfilled elastomer with simultaneously enhanced toughness and stiffness is demonstrated. The designed elastomer comprises homogeneous networks with ultrastrong, reversible, and sacrificial octuple hydrogen bonding (HB), which evenly distribute the stress to each polymer chain during loading, thus enhancing stretchability and delaying fracture. Strong HBs and corresponding nanodomains enhance the stiffness by restricting the network mobility, and at the same time improve the toughness by dissipating energy during the transformation between different configurations. In addition, the stiffness mismatch between the hard HB domain and the soft poly(dimethylsiloxane)-rich phase promotes crack deflection and branching, which can further dissipate energy and alleviate local stress. These cooperative mechanisms endow the elastomer with both high fracture toughness (17016 J m ) and high Young's modulus (14.7 MPa), circumventing the trade-off between toughness and stiffness. This work is expected to impact many fields of engineering requiring elastomers with unprecedented mechanical performance.

摘要

目前的合成弹性体存在众所周知的韧性和刚度之间的权衡问题。通过多尺度实验和原子模拟相结合,展示了一种同时具有增强韧性和刚度的透明无填充弹性体。所设计的弹性体包含具有超强力、可逆和牺牲性八重氢键(HB)的均匀网络,在加载过程中将应力均匀分布到每个聚合物链上,从而提高拉伸性并延迟断裂。强氢键和相应的纳米域通过限制网络流动性来提高刚度,同时在不同构型之间转变时通过耗散能量来提高韧性。此外,硬氢键域和富含聚二甲基硅氧烷的软相之间的刚度不匹配促进了裂纹偏转和分支,这可以进一步耗散能量并减轻局部应力。这些协同机制赋予弹性体高断裂韧性(17016 J/m²)和高杨氏模量(14.7 MPa),规避了韧性和刚度之间的权衡。这项工作有望影响许多需要具有前所未有机械性能的弹性体的工程领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3999/11468028/9c38a73cc420/ADMA-33-2008523-g001.jpg

相似文献

1
Simultaneously Toughening and Stiffening Elastomers with Octuple Hydrogen Bonding.
Adv Mater. 2021 Jun;33(23):e2008523. doi: 10.1002/adma.202008523. Epub 2021 May 3.
2
Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness.
ACS Appl Mater Interfaces. 2022 Jul 27;14(29):33912-33921. doi: 10.1021/acsami.2c09761. Epub 2022 Jul 18.
3
Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers.
Nat Commun. 2022 Apr 27;13(1):2279. doi: 10.1038/s41467-022-30021-3.
4
Toughening elastomers with sacrificial bonds and watching them break.
Science. 2014 Apr 11;344(6180):186-9. doi: 10.1126/science.1248494.
6
Toughening Self-Healing Elastomers with Chain Mobility.
Adv Sci (Weinh). 2024 Aug;11(30):e2308154. doi: 10.1002/advs.202308154. Epub 2024 Jun 12.
8
A molecular interpretation of the toughness of multiple network elastomers at high temperature.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2116127119. doi: 10.1073/pnas.2116127119. Epub 2022 Mar 24.
9
High-Toughness and High-Strength Solvent-Free Linear Poly(ionic liquid) Elastomers.
Adv Mater. 2024 Feb;36(7):e2308547. doi: 10.1002/adma.202308547. Epub 2023 Dec 7.
10
Toughening Elastomers Using a Mussel-Inspired Multiphase Design.
ACS Appl Mater Interfaces. 2018 Jul 18;10(28):23485-23489. doi: 10.1021/acsami.8b08844. Epub 2018 Jul 9.

引用本文的文献

1
Bidirectional mechanisms and emerging strategies for implantable bioelectronic interfaces.
Bioact Mater. 2025 Jun 19;52:634-667. doi: 10.1016/j.bioactmat.2025.06.014. eCollection 2025 Oct.
2
Progress of Ionogels in Flexible Pressure Sensors: A Mini-Review.
Polymers (Basel). 2025 Apr 18;17(8):1093. doi: 10.3390/polym17081093.
4
Nanostructure design of 3D printed materials through macromolecular architecture.
Chem Sci. 2024 Nov 1;15(46):19345-58. doi: 10.1039/d4sc05597g.
6
Toughening Self-Healing Elastomers with Chain Mobility.
Adv Sci (Weinh). 2024 Aug;11(30):e2308154. doi: 10.1002/advs.202308154. Epub 2024 Jun 12.
7
Regulation of Hard Segment Cluster Structures for High-performance Poly(urethane-urea) Elastomers.
Adv Sci (Weinh). 2024 Jun;11(22):e2400255. doi: 10.1002/advs.202400255. Epub 2024 Apr 11.
9
Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication.
Adv Sci (Weinh). 2023 Dec;10(34):e2304506. doi: 10.1002/advs.202304506. Epub 2023 Oct 9.
10
Nanoparticle-Based Tough Polymers with Crack-Propagation Resistance.
Langmuir. 2023 Jul 4;39(26):9262-9272. doi: 10.1021/acs.langmuir.3c01226. Epub 2023 Jun 16.

本文引用的文献

1
Hybrid Hydrogels with Extremely High Stiffness and Toughness.
ACS Macro Lett. 2014 Jun 17;3(6):520-523. doi: 10.1021/mz5002355. Epub 2014 May 19.
2
Soft wall-climbing robots.
Sci Robot. 2018 Dec 19;3(25). doi: 10.1126/scirobotics.aat2874.
3
Room-temperature autonomous self-healing glassy polymers with hyperbranched structure.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11299-11305. doi: 10.1073/pnas.2000001117. Epub 2020 May 7.
4
Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs.
Adv Mater. 2019 Oct;31(43):e1901561. doi: 10.1002/adma.201901561. Epub 2019 Jul 3.
5
High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking.
Adv Mater. 2020 May;32(18):e1901244. doi: 10.1002/adma.201901244. Epub 2019 Jun 19.
6
Sideways and stable crack propagation in a silicone elastomer.
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9251-9256. doi: 10.1073/pnas.1820424116. Epub 2019 Apr 19.
7
An ultra-durable icephobic coating by a molecular pulley.
Soft Matter. 2019 Apr 24;15(17):3607-3611. doi: 10.1039/c9sm00162j.
8
Stretchable materials of high toughness and low hysteresis.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5967-5972. doi: 10.1073/pnas.1821420116. Epub 2019 Mar 8.
9
Mechanoresponsive self-growing hydrogels inspired by muscle training.
Science. 2019 Feb 1;363(6426):504-508. doi: 10.1126/science.aau9533.
10
Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels.
Phys Rev Lett. 2018 Nov 2;121(18):185501. doi: 10.1103/PhysRevLett.121.185501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验