Suppr超能文献

格拉斯曼时间演化矩阵乘积算符:一种用于费米子路径积分模拟的高效数值方法。

Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations.

作者信息

Xu Xiansong, Guo Chu, Chen Ruofan

机构信息

College of Physics and Electronic Engineering, and Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China.

Science, Math and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372.

出版信息

J Chem Phys. 2024 Oct 21;161(15). doi: 10.1063/5.0226167.

Abstract

Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman-Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.

摘要

由于与结构化环境耦合时的非微扰和非马尔可夫性质,为开放量子系统开发数值精确求解器是一项具有挑战性的任务。费曼 - 弗农影响泛函方法是研究开放量子系统动力学的有力分析工具。包括准绝热传播子技术和基于张量网络的时间演化矩阵乘积算符方法在内的影响泛函的数值处理方法,已被证明在研究具有玻色子环境的开放量子系统方面是有效的。然而,费米子路径积分的数值实现受到所涉及的格拉斯曼代数的困扰。在这项工作中,我们详细介绍了用于费米子开放量子系统的格拉斯曼时间演化矩阵乘积算符方法。特别是,我们引入了格拉斯曼张量、带符号矩阵乘积算符和格拉斯曼矩阵乘积态的概念来处理格拉斯曼路径积分。以单轨道安德森杂质模型为例,我们回顾了用于实时非平衡动力学、实时和虚时平衡动力学的结构化费米子环境的数值基准,以及它作为杂质求解器的应用。这些基准表明,我们的方法是研究强耦合物理和非马尔可夫动力学的一种稳健且有前景的数值方法。它还可以作为一种替代的杂质求解器,用于通过动态平均场理论研究强关联量子物质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验