SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
Nat Commun. 2018 Aug 20;9(1):3322. doi: 10.1038/s41467-018-05617-3.
In order to model realistic quantum devices it is necessary to simulate quantum systems strongly coupled to their environment. To date, most understanding of open quantum systems is restricted either to weak system-bath couplings or to special cases where specific numerical techniques become effective. Here we present a general and yet exact numerical approach that efficiently describes the time evolution of a quantum system coupled to a non-Markovian harmonic environment. Our method relies on expressing the system state and its propagator as a matrix product state and operator, respectively, and using a singular value decomposition to compress the description of the state as time evolves. We demonstrate the power and flexibility of our approach by numerically identifying the localisation transition of the Ohmic spin-boson model, and considering a model with widely separated environmental timescales arising for a pair of spins embedded in a common environment.
为了对现实的量子设备进行建模,有必要模拟与环境强耦合的量子系统。迄今为止,对开放量子系统的大多数理解要么局限于弱系统-浴耦合,要么局限于特殊情况下特定数值技术变得有效的情况。在这里,我们提出了一种通用但仍然精确的数值方法,该方法有效地描述了与非马尔可夫谐波环境耦合的量子系统的时间演化。我们的方法依赖于将系统状态及其传播子分别表示为矩阵乘积态和算子,并使用奇异值分解随着时间的推移压缩状态的描述。我们通过数值识别欧姆自旋-玻色子模型的局域化转变,并考虑在共同环境中嵌入一对自旋的模型中出现的广泛分离的环境时间尺度,来展示我们方法的强大功能和灵活性。