Sun Jing, Chen Mengzhen, Huang Tao, Ding Guqiao, Wang Zhongyang
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Nanomaterials (Basel). 2024 Sep 25;14(19):1546. doi: 10.3390/nano14191546.
The size-dependent photoluminescence (PL) blue shift in organometal halide perovskite nanoparticles has traditionally been attributed to quantum confinement effects (QCEs), irrespective of nanoparticle size. However, this interpretation lacks rigor for nanoparticles with diameters exceeding the exciton Bohr radius (rB). To address this, we investigated the PL of MAPbBr nanoparticles (MNPs) with diameters ranging from 2 to 20 nm. By applying the Brus equation and Burstein-Moss theory to fit the PL and absorption blue shifts, we found that for MNPs larger than rB, the blue shift is not predominantly governed by QCEs but aligns closely with the band filling effect. This was further corroborated by a pronounced excitation-density-dependent PL blue shift (Burstein-Moss shift) at high photoexcitation densities. Additionally, trap-state filling was also found to be not a negligible origin of the PL blue shift, especially for the smaller MNPs. The time-resolved PL spectra (TRPL) and excitation-density-dependent TRPL are collected to support the coexistence of both filling effects by the high initial carrier density (10-10 cm) and the recombination dynamics of localized excitons and free carriers in the excited state. These findings underscore the combined role of the band filling and trap-state filling effects in the size-dependent PL blue shift for solution-prepared MNPs with diameters larger than rB, offering new insights into the intrinsic PL blue shift in organometal halide perovskite nanoparticles.
传统上,有机金属卤化物钙钛矿纳米颗粒中与尺寸相关的光致发光(PL)蓝移被归因于量子限制效应(QCEs),而与纳米颗粒大小无关。然而,对于直径超过激子玻尔半径(rB)的纳米颗粒,这种解释缺乏严谨性。为了解决这个问题,我们研究了直径范围约为2至20 nm的MAPbBr纳米颗粒(MNPs)的PL。通过应用布儒斯方程和伯斯坦-莫斯理论来拟合PL和吸收蓝移,我们发现对于大于rB的MNPs,蓝移并非主要由QCEs决定,而是与能带填充效应密切相关。在高光激发密度下明显的激发密度依赖的PL蓝移(伯斯坦-莫斯位移)进一步证实了这一点。此外,还发现陷阱态填充也是PL蓝移不可忽略的来源,特别是对于较小的MNPs。收集了时间分辨PL光谱(TRPL)和激发密度依赖的TRPL,以支持高初始载流子密度(~10-10 cm)以及激发态中局域激子和自由载流子的复合动力学这两种填充效应的共存。这些发现强调了能带填充和陷阱态填充效应在直径大于rB的溶液制备MNPs的尺寸相关PL蓝移中的联合作用,为有机金属卤化物钙钛矿纳米颗粒的固有PL蓝移提供了新的见解。