Katan Claudine, Mercier Nicolas, Even Jacky
Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France.
MOLTECH ANJOU, UMR-CNRS 6200, Université d'Angers , 2 Bd Lavoisier , 49045 Angers , France.
Chem Rev. 2019 Mar 13;119(5):3140-3192. doi: 10.1021/acs.chemrev.8b00417. Epub 2019 Jan 14.
Hybrid halide perovskites are now superstar materials leading the field of low-cost thin film photovoltaics technologies. Following the surge for more efficient and stable 3D bulk alloys, multilayered halide perovskites and colloidal perovskite nanostructures appeared in 2016 as viable alternative solutions to this challenge, largely exceeding the original proof of concept made in 2009 and 2014, respectively. This triggered renewed interest in lower-dimensional hybrid halide perovskites and at the same time increasingly more numerous and differentiated applications. The present paper is a review of the past and present literature on both colloidal nanostructures and multilayered compounds, emphasizing that availability of accurate structural information is of dramatic importance to reach a fair understanding of quantum and dielectric confinement effects. Layered halide perovskites occupy a special place in the history of halide perovskites, with a large number of seminal papers in the 1980s and 1990s. In recent years, the rationalization of structure-properties relationship has greatly benefited from new theoretical approaches dedicated to their electronic structures and optoelectronic properties, as well as a growing number of contributions based on modern experimental techniques. This is a necessary step to provide in-depth tools to decipher their extensive chemical engineering possibilities which surpass the ones of their 3D bulk counterparts. Comparisons to classical semiconductor nanostructures and 2D van der Waals heterostructures are also stressed. Since 2015, colloidal nanostructures have undergone a quick development for applications based on light emission. Although intensively studied in the last two years by various spectroscopy techniques, the description of quantum and dielectric confinement effects on their optoelectronic properties is still in its infancy.
混合卤化物钙钛矿如今是引领低成本薄膜光伏技术领域的超级明星材料。在对更高效、更稳定的三维体合金的需求激增之后,多层卤化物钙钛矿和胶体钙钛矿纳米结构于2016年出现,成为应对这一挑战的可行替代解决方案,在很大程度上超越了分别在2009年和2014年取得的最初概念验证。这引发了人们对低维混合卤化物钙钛矿的新兴趣,同时应用也越来越多且各有不同。本文回顾了关于胶体纳米结构和多层化合物的过去和当前文献,强调准确的结构信息对公正理解量子和介电限制效应至关重要。层状卤化物钙钛矿在卤化物钙钛矿的历史中占据特殊地位,在20世纪80年代和90年代有大量开创性论文。近年来,结构 - 性质关系的合理化极大地受益于致力于其电子结构和光电性质的新理论方法,以及越来越多基于现代实验技术的研究。这是提供深入工具以解读其广泛化学工程可能性的必要步骤,这些可能性超过了其三维体对应物。还强调了与经典半导体纳米结构和二维范德华异质结构的比较。自2015年以来,胶体纳米结构在基于发光的应用方面经历了快速发展。尽管在过去两年中通过各种光谱技术进行了深入研究,但对量子和介电限制效应及其光电性质的描述仍处于起步阶段。