Suppr超能文献

氧化锌纳米形态对A549和J774细胞的细胞毒性效力

Cytotoxic Potencies of Zinc Oxide Nanoforms in A549 and J774 Cells.

作者信息

Nazemof Nazila, Breznan Dalibor, Dirieh Yasmine, Blais Erica, Johnston Linda J, Tayabali Azam F, Gomes James, Kumarathasan Premkumari

机构信息

Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada.

Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada.

出版信息

Nanomaterials (Basel). 2024 Oct 3;14(19):1601. doi: 10.3390/nano14191601.

Abstract

Zinc oxide nanoparticles (NPs) are used in a wide range of consumer products and in biomedical applications, resulting in an increased production of these materials with potential for exposure, thus causing human health concerns. Although there are many reports on the size-related toxicity of ZnO NPs, the toxicity of different nanoforms of this chemical, toxicity mechanisms, and potency determinants need clarification to support health risk characterization. A set of well-characterized ZnO nanoforms (e.g., uncoated ca. 30, 45, and 53 nm; coated with silicon oil, stearic acid, and (3-aminopropyl) triethoxysilane) were screened for in vitro cytotoxicity in two cell types, human lung epithelial cells (A549), and mouse monocyte/macrophage (J774) cells. ZnO (bulk) and ZnCl served as reference particles. Cytotoxicity was examined 24 h post-exposure by measuring CTB (viability), ATP (energy metabolism), and %LDH released (membrane integrity). Cellular oxidative stress (GSH-GSSG) and secreted proteins (targeted multiplex assay) were analyzed. Zinc oxide nanoform type-, dose-, and cell type-specific cytotoxic responses were seen, along with cellular oxidative stress. Cell-secreted protein profiles suggested ZnO NP exposure-related perturbations in signaling pathways relevant to inflammation/cell injury and corresponding biological processes, namely reactive oxygen species generation and apoptosis/necrosis, for some nanoforms, consistent with cellular oxidative stress and ATP status. The size, surface area, agglomeration state and metal contents of these ZnO nanoforms appeared to be physicochemical determinants of particle potencies. These findings warrant further research on high-content "OMICs" to validate and resolve toxicity pathways related to exposure to nanoforms to advance health risk-assessment efforts and to inform on safer materials.

摘要

氧化锌纳米颗粒(NPs)被广泛应用于各类消费品和生物医学应用中,这导致这些材料的产量增加,存在接触风险,从而引发了人们对人类健康的担忧。尽管有许多关于氧化锌纳米颗粒尺寸相关毒性的报道,但这种化学物质不同纳米形式的毒性、毒性机制和效力决定因素仍需阐明,以支持健康风险特征描述。我们筛选了一组特征明确的氧化锌纳米形式(例如,未包覆的约30、45和53纳米;包覆硅油、硬脂酸和(3-氨丙基)三乙氧基硅烷),以检测其在两种细胞类型,即人肺上皮细胞(A549)和小鼠单核细胞/巨噬细胞(J774)细胞中的体外细胞毒性。氧化锌(块状)和氯化锌用作参考颗粒。在暴露24小时后,通过测量CTB(活力)、ATP(能量代谢)和释放的乳酸脱氢酶百分比(膜完整性)来检测细胞毒性。分析了细胞氧化应激(GSH-GSSG)和分泌蛋白(靶向多重分析)。观察到氧化锌纳米形式、剂量和细胞类型特异性的细胞毒性反应以及细胞氧化应激。细胞分泌蛋白谱表明,对于某些纳米形式,氧化锌纳米颗粒暴露会导致与炎症/细胞损伤相关的信号通路以及相应生物过程(即活性氧生成和凋亡/坏死)出现扰动,这与细胞氧化应激和ATP状态一致。这些氧化锌纳米形式的尺寸、表面积、团聚状态和金属含量似乎是颗粒效力的物理化学决定因素。这些发现值得进一步开展高含量“组学”研究,以验证和解析与纳米形式暴露相关的毒性途径,推动健康风险评估工作,并为更安全的材料提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/11482475/eb56783624dc/nanomaterials-14-01601-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验