Weinberg C R
Am J Epidemiol. 1986 Jan;123(1):162-73. doi: 10.1093/oxfordjournals.aje.a114211.
In epidemiologic case-control studies and occupational cohort studies involving more than one exposure, it is sometimes of interest to investigate the possibility that two exposures or factors have an effect that is mutually enhancing. This paper begins with a simple classic model for independence of effect and describes how this model can be applied to cohort and case-control studies. A ratio index, borrowed from the toxicologic literature, can be used to quantify departures from this null model for prospective cohort studies. Models additive in log nonresponse are appropriate in this context. Proper stratification will remove confounding effects, although the possibility that covarying susceptibilities among individuals in the population are masking or producing the appearance of synergy remains. However, under a generalized null model that requires simple independent action for each individual, but allows the response probabilities to vary among individuals, the population-based ratio parameter may not be one but should lie in a specified interval. In a case-control setting, the simple independent action model implies that the ratio of the bivariate exposure distribution for cases, divided by that for controls, should be additive in functions of the exposure levels, generalizing an earlier result. The index takes a different form when one of the factors is preventive rather than causal, and in this context, models additive in log risk become appropriate. An example is provided, and difficulties in interpretation are discussed.
在涉及多种暴露因素的流行病学病例对照研究和职业队列研究中,有时会关注两种暴露因素或因子是否存在相互增强作用的可能性。本文首先介绍一个关于效应独立性的简单经典模型,并描述该模型如何应用于队列研究和病例对照研究。从毒理学文献中借鉴的一个比率指数可用于量化前瞻性队列研究中偏离该无效模型的程度。在这种情况下,对数无反应相加模型是合适的。适当分层可消除混杂效应,不过人群中个体间易感性共变可能掩盖或产生协同效应表象的可能性依然存在。然而,在一个广义无效模型下,该模型要求每个个体有简单的独立作用,但允许反应概率在个体间有所不同,基于人群的比率参数可能不是1,而是应处于一个特定区间内。在病例对照研究中,简单独立作用模型意味着病例的双变量暴露分布与对照的双变量暴露分布之比,应在暴露水平的函数中具有可加性,这推广了一个早期结果。当其中一个因素是预防性而非因果性时,该指数会采用不同形式,在这种情况下,对数风险相加模型变得合适。本文给出了一个示例,并讨论了解释中的难点。